Advertisement

Journal of Biomolecular NMR

, Volume 3, Issue 4, pp 487–493 | Cite as

A simple and sensitive experiment for measurement of JCC couplings between backbone carbonyl and methyl carbons in isotopically enriched proteins

  • Stephan Grzesiek
  • Geerten W. Vuister
  • Ad Bax
Short Communications

Summary

A simple 2D difference experiment is described that allows quantitative measurement of 13C−13C J couplings between backbone carbonyl and side-chain carbons. Precise 3JCC values were measured from data recorded in just 2 h for a 1-mM solution of the 20-kD complex between the protein calmodulin and a 26-residue synthetic peptide. The J couplings aid in determining the χ1 angles of valine, isoleucine and threonine residues, and in making stereospecific assignments of the Val Cγ methyl groups. Error analysis indicates that the uncertainty in the derived J couplings is generally less than ca. 0.3 Hz.

Keywords

Carbon-carbon J coupling Proteins Two-dimensional NMR χ1 Angle Stereospecific assignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bax, A., Mehlkopf, A.F. and Smidt, J. (1979) J. Magn. Reson., 35, 167–169.Google Scholar
  2. Bax, A., Ikura, M., Kay, L.E., Torchia, D.A. and Tschudin, R. (1990) J. Magn. Reson., 86, 304–318.Google Scholar
  3. Bax, A. and Pochapsky, S.S. (1992) J. Magn. Reson., 99, 638–643.Google Scholar
  4. Bax, A., Max, D. and Zax, D. (1992) J. Am. Chem. Soc., 114, 6924–6925.Google Scholar
  5. Blake, P.R., Summers, M.F., Adams, M.W.W., Park, J.-B., Zhou, Z.H. and Bax, A. (1992) J. Biomol. NMR, 2, 527–533.Google Scholar
  6. Bystrov, V.F. (1976) Progr. Nucl. Magn. Reson. Spectrosc., 10, 41–81.Google Scholar
  7. Freeman, R. and Keeler, J. (1981) J. Magn. Reson., 43, 484–487.Google Scholar
  8. Ikura, M., Clore, G.M., Gronenborn, A.M., Zhu, G., Klee, C.B. and Bax, A. (1992) Science, 256, 632–638.Google Scholar
  9. Meador, W.E., Means, A.R. and Quiocho, F.A. (1992) Science, 257, 1251–1255.Google Scholar
  10. Klevit, R.E., Dalgarno, D.C., Levine, B.A. and Williams, R.J.P. (1984) Biochemistry, 24, 8152–8157.Google Scholar
  11. Krivdin, L.B. and Della, E.W. (1991) Progr. Nucl. Magn. Reson. Spectrosc., 23, 301–610.Google Scholar
  12. London, R.E. (1990) J. Magn. Reson., 86, 410–415.Google Scholar
  13. Peng, J., Thanabal, V. and Wagner, G. (1991) J. Magn. Reson., 95, 421–427.Google Scholar
  14. Santoro, J. and King, G.C. (1992) J. Magn. Reson., 97, 202–207.Google Scholar
  15. Van de Ven, F.J.M. and Philippens, M.E.P. (1992) J. Magn. Reson., 97, 637–644.Google Scholar
  16. Vuister, G.W. and Bax, A. (1992) J. Magn. Reson., 98, 428–435.Google Scholar
  17. Vuister, G.W. and Bax, A. (1993) J. Magn. Reson., in press.Google Scholar
  18. Vuister, G.W., Wang, A.C. and Bax, A. (1993) J. Am. Chem. Soc., in press.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1993

Authors and Affiliations

  • Stephan Grzesiek
    • 1
  • Geerten W. Vuister
    • 1
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A.

Personalised recommendations