Advertisement

Journal of Molecular Evolution

, Volume 41, Issue 5, pp 615–621 | Cite as

Structural evolution of the Drosophila 5S ribosomal genes

  • F. Pâques
  • M. L. Samson
  • P. Jordan
  • M. Wegnez
Articles

Abstract

We compare the 5S gene structure from nine Drosophila species. New sequence data (5S genes of D. melanogaster, D. mauritiana, D. sechellia, D. yakuba, D. erecta, D. orena, and D. takahashii) and already-published data (5S genes of D. melanogaster, D. simulans, and D. teissieri) are used in these comparisons. We show that four regions within the Drosophila 5S genes display distinct rates of evolution: the coding region (120 bp), the 5′-flanking region (54–55 bp), the 3′-flanking region (21–22 bp), and the internal spacer (149–206 bp). Intra- and interspecific heterogeneity is due mainly to insertions and deletions of 6–17-bp oligomers. These small rearrangements could be generated by fork slippages during replication and could produce rapid sequence divergence in a limited number of steps.

Key words

Drosophila Ribosomal genes Sequence data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews MT, Vaughn JC, Perry BA, Bagshaw JC (1987) Interspersion of histone and 5S RNA genes in Artemia. Gene 51:61–67Google Scholar
  2. Ashburner M, Bodmer M, Lemeunier F (1984) On the evolutionary relationships of Drosophila melanogaster. Dev Genet 4:295–312Google Scholar
  3. Belkhiri A, Buchko J, Klassen GR (1992) The 5S ribosomal RNA gene in Pythium species: two different genomic locations. Mol Biol Evol 9:1089–1102Google Scholar
  4. Bodmer M, Ashburner M (1984) Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila. Nature 309: 425–430Google Scholar
  5. Cariou ML (1987) Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genet Res Camb 50:181–185Google Scholar
  6. Coen E, Strachan T, Dover G (1982) Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol 158:17–35Google Scholar
  7. Dover GA (1993) Evolution of genetic redundancy for advanced players. Curr Opin Genet Dev 3:902–910Google Scholar
  8. Drouin G, Sévigny JM, McLaren IA, Hofman JD, Doolittle WF (1992) Variable arrangement of 5S ribosomal genes within the ribosomal DNA repeats of arthropods. Mol Biol Evol 9:826–835Google Scholar
  9. Gniadkowski M, Fiett J, Borsuk P, Hoffman-Zacharska D, Stepien PP, Bartnik E (1991) Structure and evolution of 5S rRNA genes and pseudogenes in the genus Aspergillus. J Mol Evol 33:175–178Google Scholar
  10. Jacq B, Jourdan R, Jordan BR (1977) Structure and processing of precursor 5S RNA in Drosophila melanogaster. J. Mol Biol 117: 785–795Google Scholar
  11. Junakovic N (1980) Variability in the molecular organization of the 5S RNA genes among strains of Drosophila melanogaster. Nucleic Acids Res 8:3611–3622Google Scholar
  12. Lemeunier F, David J, Tsacas L, Ashbumer M (1986) The melanogaster species group. In: Ashburner M (ed) The genetics and biology of Drosophila. Academic Press, New York, Vol 3e, pp 147–256Google Scholar
  13. Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764Google Scholar
  14. Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560Google Scholar
  15. McMahon ME, Stamenkovich D, Petes TD (1984) Tandemly arranged variant 5S ribosomal RNA genes in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 12:8001–8016Google Scholar
  16. Metzenberg RL, Stevens IN, Selker EU, Morzycka-Wroblewska E (1985) Identification and chromosomal distribution of 5S rRNA genes in Neurospora crassa. Proc Natl Acad Sci U S A 82:2067–2071Google Scholar
  17. Morton DG, Sprague KU (1984) In vitro transcription of a silkworm 5S RNA requires an upstream signal. Proc Natl Acad Sci USA81: 5519–5522Google Scholar
  18. Morzycka-Wroblewska E, Selker EU, Stevens IN, Metzenberg RL (1985) Concerted evolution of dispersed Neurospora crassa 5S RNA genes: pattern of sequence conservation between allelic and nonallelic genes. Mol Cell Biol 5:46–51Google Scholar
  19. Pâques F, Wegnez M (1993) Deletions and amplifications of tandemly arranged ribosomal 5S genes internal to a P element occur at a high rate in a dysgenic context. Genetics 135:469–476.Google Scholar
  20. Rubacha A, Sumner III W, Richter L, Beckingham K (1984) Conserved 5′ flank homologies in dipteran 5S RNA genes that would function on ‘A’ form DNA. Nucleic Acids Res 12:8193–8207Google Scholar
  21. Rubin GM, Hogness DS (1975) Effect of heat shock on the synthesis of low molecular weight RNAs in Drosophila: accumulation of a novel form of 5S RNA. Cell 6:207–213Google Scholar
  22. Samson ML, Wegnez M (1984) The 5S ribosomal genes in the Drosophila melanogaster species subgroup. Nucleotide sequence of a 5S unit from Drosophila simulans and Drosophila teissieri. Nucleic Acids Res 12:1003–1014Google Scholar
  23. Samson ML, Wegnez M (1988) Bipartite structure of the 5S ribosomal gene family in a Drosophila melanogaster strain, and its evolutionary implications. Genetics 118:685–691Google Scholar
  24. Samson ML, Wegnez M (1989) An approach to study the evolution of the Drosophila 5S ribosomal genes using P-element transformation. J Mol Evol 28:517–523Google Scholar
  25. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467Google Scholar
  26. Schlötterer C, Hauser MT, von Haeseler A, Tautz D (1994) Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol Biol Evol 11:513–522Google Scholar
  27. Selker EU, Yanofsky C, Driftmier K, Metzenberg RL, Alzner-DeWeerd B, RajBhandary UL (1981) Dispersed 5S RNA genes in N. crassa: structure, expression and evolution. Cell 24:819–828Google Scholar
  28. Sharp SJ, Garcia AD (1988) Transcription of the Drosophila melanogaster 5S RNA gene requires an upstream promoter and four intragenic sequence elements. Mol Cell Biol 8:1266–1274Google Scholar
  29. Sharp S, Garcia A, Cooley L, Söll D (1984) Transcriptionally active and inactive gene repeats within the D. melanogaster 5S RNA gene cluster. Nucleic Acids Res 12:7617–7632Google Scholar
  30. Suzuki H, Moriwaki K, Sakurai S (1994) Sequences and evolutionary analysis of mouse 5S rDNAs. Mol Biol Evol 11:704–710PubMedGoogle Scholar
  31. Tschudi C, Pirrotta V (1980) Sequence and heterogeneity in the 5S RNA gene cluster of Drosophila melanogaster. Nucleic Acid Res 8:441–451Google Scholar
  32. Tschudi C, Pirrotta V, Junakovic N (1982) Rearrangements of the 5S RNA gene cluster of Drosophila melanogaster associated with the insertion of a B104 element. EMBO J 1:977–985Google Scholar
  33. Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc Natl Acad Sci U S A 77:2158–2162Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • F. Pâques
    • 1
  • M. L. Samson
    • 1
  • P. Jordan
    • 1
  • M. Wegnez
    • 1
  1. 1.Laboratoire d'Embryologie Moléculaire, Unité de Recherche Associée 1134, Centre National de la Recherche ScientifiqueUniversité Paris XIOrsay CEDEXFrance

Personalised recommendations