Skip to main content
Log in

Structural evolution of the Drosophila 5S ribosomal genes

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

We compare the 5S gene structure from nine Drosophila species. New sequence data (5S genes of D. melanogaster, D. mauritiana, D. sechellia, D. yakuba, D. erecta, D. orena, and D. takahashii) and already-published data (5S genes of D. melanogaster, D. simulans, and D. teissieri) are used in these comparisons. We show that four regions within the Drosophila 5S genes display distinct rates of evolution: the coding region (120 bp), the 5′-flanking region (54–55 bp), the 3′-flanking region (21–22 bp), and the internal spacer (149–206 bp). Intra- and interspecific heterogeneity is due mainly to insertions and deletions of 6–17-bp oligomers. These small rearrangements could be generated by fork slippages during replication and could produce rapid sequence divergence in a limited number of steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews MT, Vaughn JC, Perry BA, Bagshaw JC (1987) Interspersion of histone and 5S RNA genes in Artemia. Gene 51:61–67

    Google Scholar 

  • Ashburner M, Bodmer M, Lemeunier F (1984) On the evolutionary relationships of Drosophila melanogaster. Dev Genet 4:295–312

    Google Scholar 

  • Belkhiri A, Buchko J, Klassen GR (1992) The 5S ribosomal RNA gene in Pythium species: two different genomic locations. Mol Biol Evol 9:1089–1102

    Google Scholar 

  • Bodmer M, Ashburner M (1984) Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila. Nature 309: 425–430

    Google Scholar 

  • Cariou ML (1987) Biochemical phylogeny of the eight species in the Drosophila melanogaster subgroup, including D. sechellia and D. orena. Genet Res Camb 50:181–185

    Google Scholar 

  • Coen E, Strachan T, Dover G (1982) Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. J Mol Biol 158:17–35

    Google Scholar 

  • Dover GA (1993) Evolution of genetic redundancy for advanced players. Curr Opin Genet Dev 3:902–910

    Google Scholar 

  • Drouin G, Sévigny JM, McLaren IA, Hofman JD, Doolittle WF (1992) Variable arrangement of 5S ribosomal genes within the ribosomal DNA repeats of arthropods. Mol Biol Evol 9:826–835

    Google Scholar 

  • Gniadkowski M, Fiett J, Borsuk P, Hoffman-Zacharska D, Stepien PP, Bartnik E (1991) Structure and evolution of 5S rRNA genes and pseudogenes in the genus Aspergillus. J Mol Evol 33:175–178

    Google Scholar 

  • Jacq B, Jourdan R, Jordan BR (1977) Structure and processing of precursor 5S RNA in Drosophila melanogaster. J. Mol Biol 117: 785–795

    Google Scholar 

  • Junakovic N (1980) Variability in the molecular organization of the 5S RNA genes among strains of Drosophila melanogaster. Nucleic Acids Res 8:3611–3622

    Google Scholar 

  • Lemeunier F, David J, Tsacas L, Ashbumer M (1986) The melanogaster species group. In: Ashburner M (ed) The genetics and biology of Drosophila. Academic Press, New York, Vol 3e, pp 147–256

    Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Google Scholar 

  • McMahon ME, Stamenkovich D, Petes TD (1984) Tandemly arranged variant 5S ribosomal RNA genes in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 12:8001–8016

    Google Scholar 

  • Metzenberg RL, Stevens IN, Selker EU, Morzycka-Wroblewska E (1985) Identification and chromosomal distribution of 5S rRNA genes in Neurospora crassa. Proc Natl Acad Sci U S A 82:2067–2071

    Google Scholar 

  • Morton DG, Sprague KU (1984) In vitro transcription of a silkworm 5S RNA requires an upstream signal. Proc Natl Acad Sci USA81: 5519–5522

    Google Scholar 

  • Morzycka-Wroblewska E, Selker EU, Stevens IN, Metzenberg RL (1985) Concerted evolution of dispersed Neurospora crassa 5S RNA genes: pattern of sequence conservation between allelic and nonallelic genes. Mol Cell Biol 5:46–51

    Google Scholar 

  • Pâques F, Wegnez M (1993) Deletions and amplifications of tandemly arranged ribosomal 5S genes internal to a P element occur at a high rate in a dysgenic context. Genetics 135:469–476.

    Google Scholar 

  • Rubacha A, Sumner III W, Richter L, Beckingham K (1984) Conserved 5′ flank homologies in dipteran 5S RNA genes that would function on ‘A’ form DNA. Nucleic Acids Res 12:8193–8207

    Google Scholar 

  • Rubin GM, Hogness DS (1975) Effect of heat shock on the synthesis of low molecular weight RNAs in Drosophila: accumulation of a novel form of 5S RNA. Cell 6:207–213

    Google Scholar 

  • Samson ML, Wegnez M (1984) The 5S ribosomal genes in the Drosophila melanogaster species subgroup. Nucleotide sequence of a 5S unit from Drosophila simulans and Drosophila teissieri. Nucleic Acids Res 12:1003–1014

    Google Scholar 

  • Samson ML, Wegnez M (1988) Bipartite structure of the 5S ribosomal gene family in a Drosophila melanogaster strain, and its evolutionary implications. Genetics 118:685–691

    Google Scholar 

  • Samson ML, Wegnez M (1989) An approach to study the evolution of the Drosophila 5S ribosomal genes using P-element transformation. J Mol Evol 28:517–523

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Google Scholar 

  • Schlötterer C, Hauser MT, von Haeseler A, Tautz D (1994) Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol Biol Evol 11:513–522

    Google Scholar 

  • Selker EU, Yanofsky C, Driftmier K, Metzenberg RL, Alzner-DeWeerd B, RajBhandary UL (1981) Dispersed 5S RNA genes in N. crassa: structure, expression and evolution. Cell 24:819–828

    Google Scholar 

  • Sharp SJ, Garcia AD (1988) Transcription of the Drosophila melanogaster 5S RNA gene requires an upstream promoter and four intragenic sequence elements. Mol Cell Biol 8:1266–1274

    Google Scholar 

  • Sharp S, Garcia A, Cooley L, Söll D (1984) Transcriptionally active and inactive gene repeats within the D. melanogaster 5S RNA gene cluster. Nucleic Acids Res 12:7617–7632

    Google Scholar 

  • Suzuki H, Moriwaki K, Sakurai S (1994) Sequences and evolutionary analysis of mouse 5S rDNAs. Mol Biol Evol 11:704–710

    CAS  PubMed  Google Scholar 

  • Tschudi C, Pirrotta V (1980) Sequence and heterogeneity in the 5S RNA gene cluster of Drosophila melanogaster. Nucleic Acid Res 8:441–451

    Google Scholar 

  • Tschudi C, Pirrotta V, Junakovic N (1982) Rearrangements of the 5S RNA gene cluster of Drosophila melanogaster associated with the insertion of a B104 element. EMBO J 1:977–985

    Google Scholar 

  • Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC (1980) Rapid duplication and loss of genes coding for the α chains of hemoglobin. Proc Natl Acad Sci U S A 77:2158–2162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M. Wegnez

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pâques, F., Samson, M.L., Jordan, P. et al. Structural evolution of the Drosophila 5S ribosomal genes. J Mol Evol 41, 615–621 (1995). https://doi.org/10.1007/BF00175820

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175820

Key words

Navigation