Advertisement

European Journal of Nuclear Medicine

, Volume 21, Issue 2, pp 118–123 | Cite as

Regional cerebral blood flow in normal pressure hydrocephalus: diagnostic and prognostic aspects

  • Anders Larsson
  • Ann-Christine Bergh
  • Marianne Bilting
  • Åsa Ärlig
  • Lars Jacobsson
  • Hannes Stephensen
  • Carsten Wikkelsö
Original Article

Abstract

Relative regional cerebral blood flow (rrCBF) was measured by single-photon emission tomography (SPET), using technetium-99m-d,l-hexamethylpropylene amine oxime (HMPAO) as flow tracer, in 23 patients with normal pressure hydrocephalus (NPH). 1000 MBq 99mTc-HMPAO was given intravenously and the rrCBF calculated as regional/cerebellar count level ratios. The patients were examined before and 3–12 months after ventriculoperitoneal shunt surgery. rrCBF was also determined in ten healthy aged matched volunteers who served as controls. The NPH patients had decreased rrCBF in the hippocampal regions and in the frontal and parietal white matter as compared to the controls. The frontal/parietal rrCBF ratio correlated with both psychiatric disability and the preoperative degree of incontinence. Decreased flow in frontal white matter, frontoparietal and hippocampal grey matter and a low frontalparietal grey matter flow ratio preoperatively correlated with improvement in both Mini Mental State score and psychiatric disability after shunt surgery. After shunt surgery the rrCBF increased in the mesencephalon, frontal grey and white matter, parietal white matter and hippocampus. The flow increase in hippocampal regions and frontal white matter correlated with improvement in psychiatric symptomatology. The results of this study regarding the frontal and hippocampal rrCBF patterns, and the clinical correlation, support the hypothesis that CBF changes in these regions are of patohphysiological and prognostic importance in NPH.

Key words

Normal pressure hydrocephalus Singlephoton emission tomography Regional cerebral blood flow Hexamethylpropylene amine oxime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greitz TVB, Grepe AOL, Kalmer MSL, Lopez J. Pre- and postoperative evaluation of cerebral blood flow in low-pressure hydrocephalus. J Neurosurg 1969;31: 644–651Google Scholar
  2. 2.
    Graff-Radford NR, Rezai K, Godersky JC, Eslinger P, Damasio H, Kirchner PT. Regional cerebral blood flow in normal pressure hydrocephalus. J Neurol Neurosug Psychiatry 1987;50: 1589–1596Google Scholar
  3. 3.
    Mamo HL, Meric PC, Ponsin JC, Rey AC, Luft AG, Seylaz JA. Cerebral blood flow in normal pressure hydrocephalus. Stroke 1987;18:1074–1080Google Scholar
  4. 4.
    Ishikawa M, Kikuchi H, Taki W Kobayashi A, Nishizawa S, Yonekura Y, Konishi J. Regional cerebral blood flow and oxygen metabolism in normal pressure hydrocephalus after subarchnoid haemorrhage. Neurol Med Chir 1989;29: 382–388Google Scholar
  5. 5.
    Ingvar DH, Schwartz MS. The cerebral blood flow in low pressure hydrocephalus. In: Lundberg N, Ponten U, Brock M, eds. Intracranial pressure IT. New York: Springer; 1975: 153–159Google Scholar
  6. 6.
    Mathew NT, Meyer JS, Hartmann A, Ott EO. Abnormal cerebrospinal-blood flow dynamics. Implications in diagnosis, treatmant and prognosis in normal pressure hydrocephalus. Arch Neurol 1975;32: 657–664Google Scholar
  7. 7.
    Moretti JL, Sergent A, Louarn F, Rancurel G, le Percq M, Flavigny R, Degos J-D, Caron J-P, le Ponsin Lafitte M, Bardy A, Vigneron N. Cortical perfusion assessment with 123I-iso-propyl amphetamine (123I-IAMP) in normal pressure hydrocephalus (NPH). Eur J Nucl Med 1988;14: 73–79Google Scholar
  8. 8.
    Kamiya K, Yamashita N, Nagai H, Mizawa I. Investigation of normal pressure hydrocephalus by 123I-IMP SPECT. Neurol Med Chir 1991;31: 503–507Google Scholar
  9. 9.
    Kimura M, Tanaka A, Yoshinaga S. Significance of perventricular hemodynamics in normal pressure hydrocephalus. Neurosurgery 1992;30: 701–704Google Scholar
  10. 10.
    Graff-Radford NR, Godersky JC, Jones MP. Variables predicting surgical outcome in symptomatic hydrocephalus in the elderly. Neurology 1989;39: 1601–1604Google Scholar
  11. 11.
    Kushner M, Youkin D, Weinberger J, Hurtig H, Goldberg G, Reivich M. Cerebral hemodynamics in the diagnosis of normal pressure hydrocephalus. Neurology 1984;34: 96–99Google Scholar
  12. 12.
    Tamaki N, Kusunoki T, Wakabayashi T, Matsumoto s. Cerebral hemodynamics in normal-pressure hydrocephalus. Evaluation by 113Xe inhalation method and dynamic CT study. J Neurosurg 1984;61: 510–514Google Scholar
  13. 13.
    Meyer IS, Kitagawa Y, Tanahashi N, Tachibana H, Kandula P, Cech DA, Rose JE, Grossman RG. Pathogenesis of normal pressure hydrocephalus, preliminary observations. Surg Neurol 1985;23: 121–133Google Scholar
  14. 14.
    Burns A, Philpot MP, Costa DC, Ell PJ, Levy R. The investigation of Alzheimer's disease with single photon emission tomography. J Neural Neurosurg Psychiatry 1989;52: 248–253Google Scholar
  15. 15.
    Habert MO, Spampinato U, Mas JL, Piketty ML, Bourdel MC, de Recondo J, Rondot P, Askienazy S. A comparative technetium 99m hexamethylpropylene amine oxime SPET study in different types of dementia. Eur J Nucl Med 1991;18: 3–11Google Scholar
  16. 16.
    Costa DC, Ell PJ, Burns A, Philpot M, Levy R. CBF tomograms with 99mTc-HM-PAO in patients with dementia (Alzheimer type and HIV) and Parkinson's disease — initial results. J Cereb Blood Flow Menab 1988;8 (Suppl): 109–115Google Scholar
  17. 17.
    17. Links JM. Optimization of acquisition parameters for brain SPECT. In: Weber DA, Devous MD, Tikofsky RS, Woodhead AD, Vivirito KJ, eds. Brain SPECT perfusion imaging: image acquisition, processing, display, and interpretion. Proceedings of Workshop Held at Brookhaven National Laboratory, 8–9, October 1991: 28–31Google Scholar
  18. 18.
    Lycke J, Wikkelsö C, Bergh A-C, Jacobsson L, Andersen O. Regional cerebral blood flow in multiple sclerosis measured by single photon emission tomography with technetium-99m hexamethyl-propylenamine oxime. Ear Neurol 1993;33: 166–167Google Scholar
  19. 19.
    Larsson A, Moonen M, Bergh A-C, Lindberg S, Wikkelsö C. Predictive value of quantitative cisternography in normal pressure hydrocephalus. Acta Neural Scand 1990,1: 327–332Google Scholar
  20. 20.
    Wikkelsö C, Andersson H, Blomstrand C, Lindqvist G, Svendsen P. Normal pressure hydrocephalus. Predictive value of the cerebrospinal fluid tap-test. Acta Neurol Scand 1986;73: 566–573Google Scholar
  21. 21.
    Larsson A, Wikkelsö C, Bilting M, Stephensen H. Clinical parameters in 74 consecutive patients shunt operated for normal pressure hydrocephalus. Acta Neural Scan 1991;84: 475–482Google Scholar
  22. 22.
    Dureman I. Sälde H. In: Psykometriska och experimentalpsykologiska metoder för klinisk tilldmpning. Uppsala: Almqvist och Wiksell, 1959Google Scholar
  23. 23.
    Gazzaniga M, ed. Handbook of behavioural neurobiology vol 2. Neuropsychology. New York: Plenum Press, 1979Google Scholar
  24. 24.
    Kolb B, Whishan JQ: In: Fundamentals of human neuropsychology, 2nd edn. New York: W.H. Freeman, 1985Google Scholar
  25. 25.
    Folstein M, Folstein S, McHugh P. Mini-Mental State — a practical method for grading the cognitive state of patients for the clinician. J Psychiatry Res 1975;12: 189–198CrossRefGoogle Scholar
  26. 26.
    Wikkelsö C, Andersson H, Lindberg S, Blomstrand C. Shuntography — a radiological scanning method for evaluation of cerebrospinal fluid shunt patency. Nucl Med Commun 1983;4: 88–93Google Scholar
  27. 27.
    Ahlberg J, Norlen L, Blomstrand C, Wikkelsö C. Outcome of shunt operation on urinary incontinence in normal pressure hydrocephalus predicted by lumbar pucture. J Neural Neurosurg Psychiatry 1988;51:105–108Google Scholar
  28. 28.
    Wikkelsö C, Andersson H, Blomstrand C, Matousek M, Svendsen P Computed tomography of the brain in the diagnosis of and prognosis in normal pressure hydrocephalus. Neuroradiology 1989;31: 160–165Google Scholar
  29. 29.
    Anderson B. Relief of akinetic mutism from obstructive hydrocephalus using bromocriptine and ephedrine. J Neurosurg 1992;76: 152–155Google Scholar
  30. 30.
    Pappada G, Poletti C, Guazzoni A, Sani R, Colli M. Normal pressure hydrocephalus: relationship among clinical picture, CT scan and intracranial pressure monitoring. Neurosurg Sci 1986;30: 115–121Google Scholar
  31. 31.
    Hashimoto K, Shibasaki H, Tabuchi K. Auditory brainstem responses before and after shunting in patients with suspected normal pressure hydrocephalus. Neural Med Chir 1990;30: 29–35Google Scholar
  32. 32.
    Andersen AR, Friberg HH, Schmidt JF, Hasselbalch SG. Quantitative measurements of cerebral blood flow using SPECT and [99mTc]-d,l-HM-PAO compared to xenon-133. J Cereb Blood Flow Menab 1988;8: 69–81Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Anders Larsson
    • 1
  • Ann-Christine Bergh
    • 2
  • Marianne Bilting
    • 4
  • Åsa Ärlig
    • 3
  • Lars Jacobsson
    • 3
  • Hannes Stephensen
    • 4
  • Carsten Wikkelsö
    • 1
  1. 1.Department of NeurologySahlgren HospitalGöteborgSweden
  2. 2.Department of Clinical Physiology, Section of Nuclear MedicineSahlgren HospitalGöteborgSweden
  3. 3.Department of Radiation PhysicsSahlgren HospitalGöteborgSweden
  4. 4.Department of NeurosurgerySahlgren HospitalGöteborgSweden

Personalised recommendations