Journal of Molecular Evolution

, Volume 38, Issue 1, pp 18–27 | Cite as

Amplification of the ancient murine Lx family of long interspersed repeated DNA occurred during the murine radiation

  • Anthony V. Furano
  • Bruce E. Hayward
  • Pascale Chevret
  • François Catzeflis
  • Karen Usdin


We identified and characterized the relics of an ancient rodent Ll family, referred to as Lx, which was extensively amplified at the time of the murine radiation about 12 million years ago, and which we showed was ancestral to the modern L1 families in rat and mouse. Here we have extended our analysis of the Lx amplification by examining more murine and nonmurine species for Lx sequences using both blot hybridization and the polymerase chain reaction for a total of 36 species. In addition we have determined the relative copy number and sequence divergence, or age, of Lx elements in representative murine genera. Our results show that while Lx sequences are confined to murine genera, the extent of the amplification was different in the different murine lineages, indicating that the amplification of Lx did not precede, but was coincident with, the murine radiation. The implications of our findings for the evolutionary dynamics of L1 families and the utility of ancestral amplification events for systematics are discussed.

Key Words

L1 family LINE family Molecular synapomorphy Ancient L1 family Rodent systematics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar J, Clauzon G, Michaux J (1989) La limite Mio-Pliocène dans le Sud de la France d'après les faune de rongeurs: état de la question et remarques sur les datations a l'aide de rongeurs. Boll Soc Pal Ital 28:137–145Google Scholar
  2. Aguilar J, Michaux J, Bachelet B, Calvet M, Faillat J (1991) Les nouvelles faunes de rongeurs proches de la limite MioPliocene en Roussillon. Implications biostratigraphiques et biogeographiques. Paleovertebrata (Montpellier) 20:147–174Google Scholar
  3. Ameur Chabbar R, Jaeger J, Michaux J (1976) Radiometric age of early Hipparion fauna in North-West Africa. Nature 261:38–39Google Scholar
  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA (1989) Current protocols in molecular biology. John Wiley and Sons, New YorkGoogle Scholar
  5. Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Methods Enzymol 29:363–418Google Scholar
  6. Burton FH, Loeb DD, Voliva CF, Martin SL, Edgell MH, Hutchison III CA (1986) Conservation throughout Mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. J Mol Biol 187: 291–304Google Scholar
  7. Carleton MD, Musser GG (1984) Muroid rodents. Orders and families of Recent mammals of the world. John Wiley and Sons, New York, pp 317–345Google Scholar
  8. Casavant NC, Hardies SC, Funk FD, Comer MB, Edgell MH, Hutchison III CA (1988) Extensive movement of LINES ONE sequences in beta-globin loci of Mus caroli and Mus domesticus. Mol Cell Biol 8:4669–4674Google Scholar
  9. Catzeflis FM (1990) DNA hybridization as a guide to phylogenies: raw data in muroid rodents. Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York, pp 317–345Google Scholar
  10. Catzeflis FM, Denys C (1992) The African Nannomys (Muridae): an early offshoot from the Mus lineage—evidence from scnDNA hybridization and compared morphology. Israel J Zool 38:219–231Google Scholar
  11. Cech TR, Hearst JE (1976) Organization of highly repeated sequences in mouse main-band DNA. J Mol Biol 100:227–256Google Scholar
  12. Chevret P, Denys C, Jaeger J, Michaux J, Catzeflis F (1992) Molecular and fossil aspects of the tempo and mode of evolution in Otomys (Otomyinae: Muridae: Mammalia). Biochem Syst Ecol 21:123–131Google Scholar
  13. Chevret P, Denys C, Jaeger J, Michaux J, Catzeflis F (1993) Molecular evidence that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Muridae). Proc Natl Acad Sci USA 90:3433–3436Google Scholar
  14. D'Ambrosio E, Waitzkin SD, Witney FR, Salemme A, Furano AV (1986) Structure of the highly repeated, long interspersed DNA family (LINE or L1Rn) of the rat. Mol Cell Biol 6:411–424Google Scholar
  15. Denys C, Michaux J (1992) La troisième molaire supérieure chez les Muridae d' Afrique tropicale et le cas des genres Acomys, Uranomys, et Lophuromys. Bonn Zool Beitr 43:367–382Google Scholar
  16. Flynn LJ, Pilbeam D, Jacobs LL, Barry JC, Behrensmeyer AK, Kappelman JW (1990) The Siwaliks of Pakistan: time and faunas in Miocene terrestrial setting. J Geol 98:589–604Google Scholar
  17. Furano AV, Robb SM, Robb FT (1988) The structure of the regulatory region of the rat L1 (L1Rn, long interspersed repeated) DNA family of transposable elements. Nucleic Acids Res 16:9215–9231Google Scholar
  18. Hardies SC, Martin SL, Voliva CF, Hutchison III CA, Edgell MH (1986) An analysis of replacement and synonymous changes in the rodent L1 repeat family. Mol Biol Evol 3:109–125Google Scholar
  19. Hattori M, Hidaka S, Sakaki Y (1985) Sequence analysis of a KpnI family member near the 3′ end of human β-globin gene. Nucleic Acids Res 13:7813–7827Google Scholar
  20. Holmes DS, Bonner J (1974) Sequence composition of rat nuclear deoxyribonucleic acid and high molecular weight nuclear ribonucleic acid. Biochemistry 13:841–848Google Scholar
  21. Hunt JA, Hall TJ, Britten RJ (1981) Evolutionary distances in Hawaiian Drosophila measured by DNA reassociation. J Mol Evol 17:361–367Google Scholar
  22. Jacobs LL, Flynn LJ, Downs WR (1989) Neogene rodents of southern Asia. Papers on fossil rodents in honor of Albert Elmer Wood. Los Angeles, Natural History Museum Los Angeles County, pp 157–177Google Scholar
  23. Jaeger J, Hartenberger J (1989) Diversification and extinction patterns among Neogene perimediterranean mammals. Philos Trans R Soc Lond [Biol] 325:401–420Google Scholar
  24. Jaeger J, Tong H, Buffetaut E (1986) The age of the Mus-Rattus divergence: paleontological data compared with the molecular clock. C R Acad Sci 302 (Ser 2):917–922Google Scholar
  25. Jaeger J, Tong H, Buffetaut E, Ingavat R (1985) The first fossil rodents from the Miocene of northern Thailand and their bearing on the problem of the origin of the Muridae. Rev Paleobiol 4:1–7Google Scholar
  26. Loeb DD, Padgett RW, Hardies SC, Shehee WR, Comer MB, Edgell MH, Hutchison III CA (1986) The sequence of a large L1Md element reveals a tandemly repeated 5′ end and several features found in retrotransposons. Mol Cell Biol 6:168–182Google Scholar
  27. Marks J, Schmid CW, Sarich VM (1988) DNA hybridization as a guide to phylogeny: relations of the Hominoidea. J Hum Evol 17:769–786Google Scholar
  28. Martin SL, Voliva CF, Burton FH, Edgell MH, Hutchison III CA (1984) A large interspersed repeat found in mouse DNA contains a long open reading frame that evolves as if it encodes a protein. Proc Natl Acad Sci USA 81:2308–2312Google Scholar
  29. Martin SL, Voliva CF, Hardies SC, Edgell MH, Hutchison III CA (1985) Tempo and mode of concerted evolution in the L1 repeat family of mice. Mol Biol Evol 2:127–140Google Scholar
  30. Mathias SL, Scott AF, Kazazian HHJ, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810Google Scholar
  31. Michaux J, Aguilar J, Bachelet B (1990) La faune des Rongeurs du Sud de la France et sa dynamique au Néogène supérieur. Vie Milieu 40:130–136Google Scholar
  32. Misonne X (1969) African and Indo-Australian Muridae: evolutionary trends. Annal Musée Royal d'Afrique Centrale Tervuuren 172:1–219Google Scholar
  33. Nur I, Pascale E, Furano AV (1988) The left end of rat L1 (L1Rn, long interspersed repeated) DNA which is a CpG island can function as a promoter. Nucleic Acids Res 16:9233–9251Google Scholar
  34. Pascale E, Liu C, Valle E, Usdin K, Furano AV (1993) The evolution of long interspersed repeated DNA (L1, LINE 1) as revealed by the analysis of an ancient rodent L1 DNA family. J Mol Evol 36:9–20Google Scholar
  35. Pascale E, Valle E, Furano AV (1990) Amplification of an ancestral mammalian L1 family of long interspersed repeated DNA occurred just before the murine radiation. Proc Natl Acad Sci USA 87:9481–9485Google Scholar
  36. Rice NR, Straus NA (1973) Relatedness of mouse satellite deoxyribonucleic acid to deoxyribonucleic acid of various Mus species. Proc Natl Acad Sci USA 70:3546–3550Google Scholar
  37. Rogers JH (1985) The origin and evolution of retroposons. Int Rev Cytol 93:187–279Google Scholar
  38. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354Google Scholar
  39. Sarich VM (1985) Rodent macromolecular systematics. Evolutionary relationships among rodents. Plenum Press, New York, pp 423–452Google Scholar
  40. Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O'Hara B, Rossiter JP, Cooley T, Heath P, Smith KD, Margolet L (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–125Google Scholar
  41. Sheldon FH, Bledsoe AH (1989) Indexes to the reassociation and stability of solution DNA hybrids. J Mol Evol 29:328–343Google Scholar
  42. Sibley CG, Ahlquist JE (1981) The phylogeny and relationships of the ratite birds as indicated by DNA-DNA hybridization. Evolution Today. Carnegie-Mellon University Press, Pittsburgh, pp 301–335Google Scholar
  43. Sutton WD, McCallum M (1972) Related satellite DNA's in the genus Mus. J Mol Biol 71:633–652Google Scholar
  44. Swergold GD (1990) Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol Cell Biol 10: 6718–6729Google Scholar
  45. Weiner AM, Deininger PL, Efstratiadis A (1986) nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem 55:631–661Google Scholar
  46. Werman SD, Springer MS, Britten RJ (1990) Nucleic acids: DNA-DNA hybridization. Molecular systematics. Sinauer Associates, Sunderland, MA, pp 204–249Google Scholar
  47. Wilson AC, Ochman H, Prager EM (1987) Molecular time scale for evolution. Trends Genet 3:241–247Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Anthony V. Furano
    • 1
  • Bruce E. Hayward
    • 1
  • Pascale Chevret
    • 2
  • François Catzeflis
    • 2
  • Karen Usdin
    • 1
  1. 1.Section on Genomic Structure and Function, Laboratory of Biochemical Pharmacology, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Institut des Sciences de l'EvolutionUniversité Montpellier IIMontpellierFrance

Personalised recommendations