Statistics and Computing

, Volume 4, Issue 2, pp 65–85 | Cite as

A genetic algorithm tutorial

  • Darrell Whitley
Article

Abstract

This tutorial covers the canonical genetic algorithm as well as more experimental forms of genetic algorithms, including parallel island models and parallel cellular genetic algorithms. The tutorial also illustrates genetic search by hyperplane sampling. The theoretical foundations of genetic algorithms are reviewed, include the schema theorem as well as recently developed exact models of the canonical genetic algorithm.

Keywords

Genetic algorithms search parallel algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackley, D. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer, Dordrecht.Google Scholar
  2. Antonisse, H. J. (1989). A new interpretation of the schema notation that overturns the binary encoding constraint. In Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.Google Scholar
  3. Bäck, T., Hoffmeister, F. and Schwefel, H. P. (1991). A survey of evolution strategies. In Proceedings of the 4th International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.Google Scholar
  4. Baker, J. (1985). Adaptive selection methods for genetic algorithms. In Proceedings of the International Conference on Genetic Algorithms and Their Applications, ed. J. Grefenstette. Lawrence Erlbaum, Hillsdale, NJ.Google Scholar
  5. Baker, J. (1987). Reducing bias and inefficiency in the selection algorithm. In Genetic Algorithms and Their Applications: Proceedings of the Second International Conference, ed. J. Grefenstette. Lawrence Erlbaum.Google Scholar
  6. Booker, L. (1987). Improving search in genetic algorithms. In Genetic Algorithms and Simulating Annealing, ed. L. Davis, pp. 61–73. Morgan Kaufmann, San Mateo, CA.Google Scholar
  7. Bridges, C. and Goldberg, D. (1987). An analysis of reproduction and crossover in a binary-coded genetic algorithm. In Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, ed. J. Grefenstette. Lawrence Erlbaum.Google Scholar
  8. Collins, R. and Jefferson, D. (1991). Selection in massively parallel genetic algorithms. In Proceedings of the 4th International Conference on Genetic Algorithms, pp. 249–256. Morgan Kaufmann, San Mateo, CA.Google Scholar
  9. Davidor, Y. (1991). A naturally occurring niche and species phenomenon: the model and first results. In Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 257–263. Morgan Kaufmann, San Mateo, CA.Google Scholar
  10. Davis, L. D. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.Google Scholar
  11. DeJong, K. (1975). An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Dissertation, Department of Computer and Communication Sciences, University of Michigan, Ann Arbor.Google Scholar
  12. Eshelman, L. (1991). The CHC adaptive search algorithm. In Foundations of Genetic Algorithms, ed. G. Rawlins, pp. 256–283. Morgan Kaufmann, San Mateo, CA.Google Scholar
  13. Fitzpatrick, J. M. and Grefenstette, J. J. (1988). Genetic algorithms in noisy environments. Machine Learning, 3, 101–120.PubMedGoogle Scholar
  14. Fogel, D. and Atmar, J. W. (eds.) (1992). First Annual Conference on Evolutionary Programming.Google Scholar
  15. Fogel, L. J., Owens, A. J. and Walsh, M J. (1966). Artificial Intelligence Through Simulated Evolution. John Wiley, New York.Google Scholar
  16. Goldberg, D. (1987). Simple genetic algorithms and the minimal, deceptive problem. In Genetic Algorithms and Simulated Annealing, ed. L. Davis. Pitman, London.Google Scholar
  17. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA.Google Scholar
  18. Goldberg, D. (1990). A note on Boltzmann tournament selection for genetic algorithms and population-oriented simulated annealing. TCGA 90003, Engineering Mechanics, University of Alabama.Google Scholar
  19. Goldberg, D. (1991). The theory of virtual alphabets. In Parallel Problem Solving from Nature. Springer-Verlag, New York.Google Scholar
  20. Goldberg, D. and Bridges, C. (1990). An analysis of a reordering operator on a GA-hard problem. Biological Cybernetics, 62, 397–405.PubMedGoogle Scholar
  21. Goldberg, D. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic Algorithms, ed. G. Rawlins, pp. 69–93. Morgan Kaufmann, San Mateo, CA.Google Scholar
  22. Gorges-Schleuter, M. (1991). Explicit parallelism of genetic algorithms through population structures. In Parallel Problem Solving from Nature, pp. 150–159. Springer-Verlag, New York.Google Scholar
  23. Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16, 122–128.Google Scholar
  24. Grefenstette, J. J. (1993). Deception considered harmful. In Foundations of Genetic Algorithms 2, ed. D. Whitley, pp. 75–91. Morgan Kaufmann, San Mateo, CA.Google Scholar
  25. Grefenstette, J. J. and Baker, J. (1989). How genetic algorithms work: a critical look at implicit parallelism. In Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.Google Scholar
  26. Hillis, D. (1990). Co-evolving parasites improve simulated evolution as an optimizing procedure. Physica D, 42, 228–234.Google Scholar
  27. Holland, J. (1975). Adaptation In Natural and Artificial Systems. University of Michigan Press, Ann Arbor.Google Scholar
  28. Liepins, G. and Vose, M. (1990). Representation issues in genetic algorithms. Journal of Experimental and Theoretical Artificial Intelligence, 2, 101–115.Google Scholar
  29. Manderick, B. and Spiessens, P. (1989). Fine grained parallel genetic algorithms. In Proceedings of the Third International Conference on Genetic Algorithms, pp. 428–433. Morgan Kaufmann, San Mateo, CA.Google Scholar
  30. Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolutionary Programs. Springer-Verlag, New York.Google Scholar
  31. Mühlenbein, H. (1991). Evolution in time and space—the parallel genetic algorithm. In Foundations of Genetic Algorithms, ed. G. Rawlins, pp. 316–337. Morgan Kaufmann, San Mateo, CA.Google Scholar
  32. Mühlenbein, H. (1992). How genetic algorithms really work: I. Mutation and hillclimbing. In Parallel Problem Solving from Nature 2, eds. R. Männer and B. Manderick. North Holland, Amsterdam.Google Scholar
  33. Nix, A. and Vose, M. (1992). Modelling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence, 5, 79–88.Google Scholar
  34. Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart.Google Scholar
  35. Schaffer, J. D. (1987). Some effects of selection procedures on hyperplane sampling by genetic algorithms. In Genetic Algorithms and Simulated Annealing, ed. L. Davis. Pitman, London.Google Scholar
  36. Schaffer, J. D. and Eshelman, L. (1993). Real-coded genetic algorithms and interval schemata. Foundations of Genetic Algorithms, 2, ed. D. Whitley. Morgan Kaufmann, San Mateo, CA.Google Scholar
  37. Schwefel, H. P. (1975). Evolutionsstrategie und numerische Optimierung. Dissertation, Technische Universität Berlin.Google Scholar
  38. Schwefel, H. P. (1981). Numerical Optimization of Computer Models. John Wiley, New York.Google Scholar
  39. Spears, W. and DeJong, K. (1991). An analysis of multi-point crossover. In Foundations of Genetic Algorithms, ed. G. Rawlins. Morgan Kaufmann, San Mateo, CA.Google Scholar
  40. Syswerda, G. (1989). Uniform crossover in genetic algorithms. Proceedings of the Third International Conference on Genetic Algorithms, pp. 2–9. Morgan Kaufmann, San Mateo, CA.Google Scholar
  41. Syswerda, G. (1991). A study of reproduction in generational and steady-state genetic algorithms. In Foundations of Genetic Algorithms, ed. G. Rawlins, pp. 94–101. Morgan Kaufmann, San Mateo, CA.Google Scholar
  42. Starkweather, T., Whitley, D. and Mathias, K. (1991). Optimization using distributed genetic algorithms. In Parallel Problem Solving from Nature. Springer-Verlag, New York.Google Scholar
  43. Tanese, R. (1989). Distributed genetic algorithms. Proceedings of the Third International Conference on Genetic Algorithms, pp. 434–439. Morgan Kaufmann, San Mateo, CA.Google Scholar
  44. Vose, M. (1993). Modeling simple genetic algorithms. In Foundations of Genetic Algorithms 2, ed. D. Whitley, pp. 63–73. Morgan Kaufmann, San Mateo, CA.Google Scholar
  45. Vose, M. and Liepins, G. (1991). Punctuated equilibria in genetic search. Complex Systems, 5, 31–44.Google Scholar
  46. Whitley, D. (1989). The GENITOR algorithm and selective pressure. Proceedings of the Third International Conference on Genetic Algorithms, pp. 116–121. Morgan Kaufmann, San Mateo, CA.Google Scholar
  47. Whitley, D. (1991). Fundamental principles of deception in genetic search. In Foundations of Genetic Algorithms, ed. G. Rawlins. Morgan Kaufmann, San Mateo, CA.Google Scholar
  48. Whitley, D. (1993a). An executable model of a simple genetic algorithm. In Foundations of Genetic Algorithms 2, ed. D. Whitley. Morgan Kaufmann, San Mateo, CA.Google Scholar
  49. Whitley, D. (1993b). Cellular genetic algorithms. In Proceedings of the Fifth International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA.Google Scholar
  50. Whitley, D. and Kauth, J. (1988). GENITOR: a different genetic algorithm. In Proceedings of the Rocky Mountain Conference on Artificial Intelligence, Denver, CO, pp. 118–130.Google Scholar
  51. Whitley, D. and Starkweather, T. (1990). Genitor II: a distributed genetic algorithm. Journal of Experimental and Theoretical Artificial Intelligence, 2, 189–214.Google Scholar
  52. Whitley, D., Das, R. and Crabb, C. (1992). Tracking primary hyperplane competitors during genetic search. Annals of Mathematics and Artificial Intelligence, 6, 367–388.Google Scholar
  53. Winston, P. (1992). Artificial Intelligence, 3rd edn. Addison-Wesley, Reading, MA.Google Scholar
  54. Wright, A. (1991). Genetic algorithms for real parameter optimization. In Foundations of Genetic Algorithms, ed. G. Rawlins. Morgan Kaufmann, San Mateo, CA.Google Scholar
  55. Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress on Genetics, pp. 356–366.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Darrell Whitley
    • 1
  1. 1.Computer Science DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations