Journal of Biomolecular NMR

, Volume 4, Issue 2, pp 171–180 | Cite as

The 13C Chemical-Shift Index: A simple method for the identification of protein secondary structure using 13C chemical-shift data

  • David S. Wishart
  • Brian D. Sykes
Research Paper

Summary

A simple technique for identifying protein secondary structures through the analysis of backbone 13C chemical shifts is described. It is based on the Chemical-Shift Index [Wishart et al. (1992) Biochemistry, 31, 1647–1651] which was originally developed for the analysis of 1Hα chemical shifts. By extending the Chemical-Shift Index to include 13Cα, 13Cβ and carbonyl 13C chemical shifts, it is now possible to use four independent chemical-shift measurements to identify and locate protein secondary structures. It is shown that by combining both 1H and 13C chemical-shift indices to produce a ‘consensus’ estimate of secondary structure, it is possible to achieve a predictive accuracy in excess of 92%. This suggests that the secondary structure of peptides and proteins can be accurately obtained from 1H and 13C chemical shifts, without recourse to NOE measurements.

Keywords

Chemical shift Secondary structure 13C NMR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer S.J., Vinson V.K., Pollard T.D. and Torchia D.A. (1993) Biochemistry, 32, 6680–6688.Google Scholar
  2. Campbell-Burk S.L., Domailled P.J., Starovas M.A., Boucher W. and Laue E.D. (1992) J. Biomol. NMR, 2, 639–646.Google Scholar
  3. Clore G.M., Bax A., Driscoll P.C., Wingfield P.T. and Grronenborn A.M. (1990) Biochemistry, 29, 8172–8184.Google Scholar
  4. Constantine K.L., Goldfarb V., Wittekind M., Friedrichs M.S., Anthony J., Ng S.-C. and Mueller L. (1993) J. Biomol. NMR, 3, 41–54.Google Scholar
  5. Dalgarno D.C., Levine B.A. and Williams R.J.P. (1983) Biosci. Rep., 3, 443–452.Google Scholar
  6. Driscoll P.C., Clore G.M., Marion D., Wingfield P.T. and Gronenborn A.M. (1990) Biochemistry, 29, 3542–3556.Google Scholar
  7. Fairbrother W.J., Palmer A.G., Rance M., Reizer J., Saier M.H. and Wright P.E. (1992) Biochemistry, 31, 4413–4425.Google Scholar
  8. Grzesiek S., Dobeli H., Gentz R., Garotta G., Labhardt A.M. and Bax A. (1992) Biochemistry, 31, 8180–8190.Google Scholar
  9. Ikura M., Kay L.E. and Bax A. (1990) Biochemistry, 29, 4659–4667.Google Scholar
  10. Ikura M., Spera S., Barbato G., Kay L.E., Krinks M. and Bax A. (1991) Biochemistry, 30, 9216–9228.Google Scholar
  11. Ikura M., Clore G.M., Gronenborn A.M., Zhu G., Klee C.B. and Bax A. (1992) Science, 256, 632–638.Google Scholar
  12. Jorgensen A.M.M., Kristensen S.M., Led J.J. and Balschmidt P. (1992) J. Mol. Biol., 227, 1146–1163.Google Scholar
  13. Kabsch W. and Sander C. (1983) Biopolymers, 22, 2577–2637.Google Scholar
  14. Kessler H., Schmieder P. and Bermel W. (1990) Biopolymers, 30, 465–475.Google Scholar
  15. LeMaster D.M. and Richards F.M. (1988) Biochemistry, 27, 142–150.Google Scholar
  16. Mierke D.F., Grdadolnik S.G. and Kessler H. (1992) J. Am. Chem. Soc., 114, 8283–8284.Google Scholar
  17. Mott H.R., Driscoll P.C., Boyd J., Cook R.M., Weir M.P. and Campbell I.D. (1992) Biochemistry, 31, 7741–7744.Google Scholar
  18. Pastore A. and Saudek V. (1990) J. Magn. Reson., 90, 165–176.Google Scholar
  19. Pelton J.G., Torchia D.A., Meadow N.D., Wong C.Y. and Roseman S. (1991) Biochemistry, 30, 10043–10057.Google Scholar
  20. Powers R., Garrett D.S., March C.J., Frieden E.A., Gronenborn A.M. and Clore G.M. (1992) Biochemistry, 31, 4334–4346.Google Scholar
  21. Richards F.M. and Kundrot C.E. (1988) Protein Struct. Funct. Genet., 3, 71–84.Google Scholar
  22. Richardson J.S. and Richardson D.C. (1988) Science, 240, 1648–1652.Google Scholar
  23. Richarz R. and Wüthrich K. (1978) Biopolymers, 17, 2133–2141.Google Scholar
  24. Romier C., Bernassau J.M., Cambillau C. and Darbon H. (1993) Protein Eng., 6, 147–156.Google Scholar
  25. Saito H. (1986) Magn. Reson. Chem., 24, 835–845.Google Scholar
  26. Shirakawa M., Fairbrother W.J., Serikawa Y., Ohkubo T., Kyogoku Y. and Wright P.E. (1993) Biochemistry, 32, 2144–2153.Google Scholar
  27. Spera S. and Bax A. (1991) J. Am. Chem. Soc., 113, 5490–5492.Google Scholar
  28. Stockman B.J., Scahill T.A., Roy M., Ulrich E.L., Strakalaitis N.A., Brunner D.P., Yem A.W. and Deibel M.R. (1992) Biochemistry, 31, 5237–5244.Google Scholar
  29. Vuister G.W., Delaglio F. and Bax A. (1993) J. Biomol. NMR, 3, 67–80.Google Scholar
  30. Wagner G. and Bruhwiler D. (1986) Biochemistry, 25, 5839–5843.Google Scholar
  31. Williamson M.P. (1990) Biopolymers, 29, 1423–1433.Google Scholar
  32. Wishart D.S., Richards F.M. and Sykes B.D. (1991) J. Mol. Biol., 222, 311–333.Google Scholar
  33. Wishart D.S., Richards F.M. and Sykes B.D. (1992) Biochemistry, 31, 1647–1651.Google Scholar
  34. Wishart, D.S. and Sykes, B.D., Methods Enzymol., in press.Google Scholar
  35. Wittekind M., Gorlach M., Friedrichs M., Dreyfuss G. and Mueller L. (1992) Biochemistry, 31, 6254–6265.Google Scholar
  36. Xu R.X., Mettesheim D., Olejniczak E.T., Meadows R., Gemmecker G. and Fesik S.W. (1993) Biopolymers, 33, 525–550.Google Scholar
  37. Yamazaki T., Yoshida M., Kanaya S., Nakamura H. and Nagayama K. (1991) PitBiochemistry, 30, 6036–6047.Google Scholar
  38. Yamazaki T., Yoshida M. and Nagayama K. (1993) Biochemistry, 32, 5656–5669.Google Scholar

Copyright information

© ESCOM Science Publishers B.V 1994

Authors and Affiliations

  • David S. Wishart
    • 1
  • Brian D. Sykes
    • 1
  1. 1.Protein Engineering Network of Centres of Excellence, Department of BiochemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations