Advertisement

Journal of Biomolecular NMR

, Volume 3, Issue 5, pp 569–576 | Cite as

Application of nonlinear sampling schemes to COSY-type spectra

  • Peter Schmieder
  • Alan S. Stern
  • Gerhard Wagner
  • Jeffrey C. Hoch
Research Paper

Summary

Nonlinear sampling along the t1 dimension is applied to COSY-type spectra. The sine dependence of the time domain signals for the cross peaks is matched by a nonlinear sampling scheme that samples most densely around the maximum of the sine function. Data are processed by maximum entropy reconstruction, using a modified implementation of the ‘Cambridge’ algorithm of Skilling and Bryan. The procedure is demonstrated for P.E.COSY spectra recorded on a cyclic hexapeptide and on a 126-residue domain of the protein villin. The number of t1 values in the nonlinearly sampled experiments was reduced by a factor of four compared to linear sampling. The sensitivity and resolution of the resulting spectra are comparable to those achieved by conventional methods. The method described can thus significantly reduce the measuring time for COSY-type spectra.

Keywords

Nonlinear sampling COSY-type spectra Maximum entropy reconstruction Resolution enhancement Sensitivity enhancement 

Abbreviations

COSY

two-dimensional correlation spectroscopy

E.COSY

exclusive COSY

P.E.COSY

primitive E.COSY

TPPI

time proportional phase incrementation

FID

free induction decay

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barna, J.C.J., Laue, E.D., Mayger, M.R., Skilling, J. and Worrall, S.J.P. (1987) J. Magn. Reson., 73, 69–77.Google Scholar
  2. Bazari, W.L., Masudaira, P., Wallek, M., Smeal, T., Jakes, R. and Ahmed, Y. (1988) Proc. Natl. Acad. Sci. USA, 85, 4986–4990.Google Scholar
  3. Hoch, J.C. (1989) Methods Enzymol., 176, 216–241.Google Scholar
  4. Hoch, J.C., Stern, A.S., Donoho, D.L. and Johnstone, I.M. (1990) J. Magn. Reson., 86, 236–246.Google Scholar
  5. Jones, J.A. and Hore, P.J. (1991) J. Magn. Reson., 92, 276–292.Google Scholar
  6. Laue, E.D., Skilling, J., Staunton, J., Sibisi, S. and Bereton, R.G. (1985) J. Magn. Reson., 62, 437–452.Google Scholar
  7. Laue, E.D., Mayger, M.R., Skilling, J. and Staunton, J. (1986) J. Magn. Reson., 68, 14–29.Google Scholar
  8. Marion, D. and Bax, A. (1988) J. Magn. Reson., 80, 528–532.Google Scholar
  9. Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.Google Scholar
  10. Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Comm., 113, 967–974.Google Scholar
  11. Müller, L. (1987) J. Magn. Reson., 72, 191–197.Google Scholar
  12. Robin, M., Delsuc, M.-A., Guittet, E. and Lallemand, J.-Y. (1991) J. Magn. Reson., 92, 645–650.Google Scholar
  13. Sibisi, S. (1983) Nature, 301, 134–136.Google Scholar
  14. Skilling, J. and Bryan, R.K. (1984) Mon. Not. R. Astron. Soc., 211, 111–124.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1993

Authors and Affiliations

  • Peter Schmieder
    • 1
  • Alan S. Stern
    • 2
  • Gerhard Wagner
    • 1
  • Jeffrey C. Hoch
    • 2
  1. 1.Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonU.S.A.
  2. 2.Rowland Institute for ScienceCambridgeU.S.A.

Personalised recommendations