Advertisement

Applied Microbiology and Biotechnology

, Volume 37, Issue 1, pp 66–73 | Cite as

Substrate specificity and stereoselectivity of fatty alcohol oxidase from the yeast Candida maltosa

  • Stephan Mauersberger
  • Hannelore Drechsler
  • Günther Oehme
  • Hans-Georg Müller
Biochemical Engineering

Summary

In Candida maltosa and other alkene-utilizing yeasts a membrane-bound fatty alcohol oxidase (FAOD) is induced by growth on n-alkenes. The oxidation of 1-alkanols to the corresponding aldehydes is accompanied by the stoichiometric consumption of 1 mol O2 and formation of 1 mol hydrogen peroxide (H2O2). The FAOD of C. maltosa shows a broad substrate specificity. It catalyses the oxidation of 1-alkanols (C4 to C22), with a maximal activity of 1.85 gmmol H2O2/ min × mg protein for 1-octanol, as well as the transformation of 2-alkanols (C8 to C16) to ketones. Other compounds as α,ω-alkenediols, ω-hydroxypalmitic acid, phenylalkanols and terpene alcohols are substrates for the enzyme, although mostly with decreased activities. The oxidation of the racemic 2-alkanols by the FAOD proceeds with very high stereoselectivity for the R(−)-enatiomers only, leaving the S(+)-2-alkanol untouched.

Keywords

Aldehyde Ketone Candida Substrate Specificity Maltosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth G, Künkel W (1979) Alcohol dehydrogenase (ADH) in yeasts. II. NAD+- and NADP+-dependent alcohol dehydrogenases in Saccharomycopsis lipolytica. Z Alg Mikrobiol 19:381–390Google Scholar
  2. Blasig R, Mauersberger S, Riege P, Schunck W-H, Jockisch W, Franke P, Müller H-G (1988) Degradation of long-chain n-alkenes by the yeast Candida maltosa. II. Oxidation of n-alkenes and intermediates using microsomal membrane fractions. Appl Microbiol Biotechnol 28:589–597Google Scholar
  3. Dole VP, Meinertz H (1960) Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599Google Scholar
  4. Fischli A (1980) Chiral building blocks in enantiomer synthesis using enzymatic transformation. In: Eberson L, Seebach D, Vasella A, Fischli A (eds) Modern synthetic methods. Otto Salle, Frankfurt am Main, pp 269–350Google Scholar
  5. Gmünder FK, Käppeli O, Fiechter A (1981) Chemostat studies on the hexadecane assimilation by the yeast Candida tropicalis. II. Regulation of cytochromes and enzymes. Eur J Appl Microbiol Biotechnol 12:135–142Google Scholar
  6. Hofmann KH, Schauer F (1988) Utilization of phenol by hydrocarbon assimilating yeasts. Antonie van Leeuwenhoek 54:179–188Google Scholar
  7. Hommel R, Ratledge C (1990) Evidence for two fatty alcohol oxidases in the biosurfactant-producing yeast Candida (Torulopsis) bombicola. FEMS Microbiol Lett 70:183–186Google Scholar
  8. Ilchenko AP (1984) Oxidase of higher alcohols in the yeast Torulopsis candida grown on hexadecane. Mikrobiologiya 53:903–906Google Scholar
  9. Ilchenko AP, Tsfasman IM (1987) Isolation and characterization of aldehyde dehydrogenase from the Torulopsis candida yeast grown on hexadecane. Biokhimiya 52:58–65Google Scholar
  10. Ilchenko AP, Tsfasman IM (1988) Isolation and characterization of alcohol oxidase for higher alcohols of the yeast Torulopsis candida grown on hexadene. Biokhimiya 53:263–271Google Scholar
  11. Käppeli O (1986) Cytochrome P-450 of yeasts. Microbiol Rev 50:244–258Google Scholar
  12. Kemp GD, Dickinson FM, Ratledge C (1988) Inducible long chain alcohol oxidase from alkene-grown Candida tropicalis. Appl Microbiol Biotechnol 29:370–374Google Scholar
  13. Kirchner G, Scollar MP, Klibanov AM (1985) Resolution of racemic mixtures via lipase catalysis in organic solvents. J Am Chem Soc 107:7072–7076Google Scholar
  14. König WA (1987) The practice of enatiomer separation by capillary gas chromatography. Hütlig-Verlag, Heidelberg, p 42Google Scholar
  15. Krauzova VI, Komarova GN, Ilchenko AP, Gulevskaya SA (1984) Oxidation of alcohols by Candida guilliermondii grown on hexadecanol. Biokhimiya 50:726–732Google Scholar
  16. Krauzova VI, Komarova GN, Ilchenko AP, Gulevskaya SA (1984) Possible pathways of the oxidation of higher alcohols by membrane fractions of yeast cultures grown on hexadecane and hexadecanol. Biokhimiya 50:726–732Google Scholar
  17. Krauzova VI, Kuvichkina TN, Sharyshev AA, Romanova IB, Lozinov AB (1986) Lauric acid and NADH synthesis during dodecanol and dodecanol oxidation by membrane fractions of the yeast Candida maltosa grown on hexadecane. Biokhimiya 51:23–27Google Scholar
  18. Krauzova VI, Sharyshev AA (1987) Study on subcellular distribution of enzymes of the initial steps of n-alkene oxidation in the yeast Candida maltosa. Biokhimiya 52:599–606Google Scholar
  19. Laane C, Tramper J, Lilly MD (1987) Biocatalysis in organic media. Elsevier, AmsterdamGoogle Scholar
  20. Lebeault JM, Meyer E, Roche B, Azoulay E (1970a) Oxydation des alcools supérieurs chez Candida tropicalis cultivé sur hydrocatrbures. Biochim Biophys Acta 220:386–395Google Scholar
  21. Lebeult JM, Roche B, Duvnjak Z, Azoulay E (1970b) Alcool- et aldéhyde-deshydrogenases particulaires de Candida tropicalis cultivé sur hydrocarbures. Biochim Biophys Acta 220:373–387Google Scholar
  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  23. Mauersberger S, Matyashova RN, Müller H-G, Lozinov AB (1980) Influence of the growth substrate and the oxygen concentration in the medium on the cytochrome P-450 content in Candida guilliermondii. Eur J Appl Microbiol Biotechnol 9:285–294Google Scholar
  24. Mauersberger S, Schunck W-H, Müller H-G (1981) The induction of cytochrome P-450 in Lodderomyces elongisporus. Z Allg Mikrobiol 21:313–321Google Scholar
  25. Mauersberger S, Schunck W-H, Müller H-G (1984) The induction of cytochrome P-450 in the alkene-utilizing yeast Lodderomyces elongisporus: alterations in the microsomal fraction. Appl Microbiol Biotechnol 19:29–35Google Scholar
  26. Mauersberger S, Schunck W-H, Blasig R (1985) Verfahren zur enzymatischen Oxidation von mittel- und langkettigen Alkoholen. GDR patent no. WP C12P/2782278Google Scholar
  27. Mauersberger S, Kärgel E, Matyashova RN, Müller H-G (1987) Subcellular organization of alkene oxidation in the yeast Candidada maltosa. J Basic Microbiol 27:565–582Google Scholar
  28. Müller H-G, Güntherberg H, Drechsler H, Mauersb erger S, Kortus K, Oehme G (1991a) Stereosectivity ub tge enzymic oxidation of racemic alkylmethylcarbinols — a new approach to the S-enantiomers. Tetrahedron Lett 32:2009–2012Google Scholar
  29. Müller H-G, Schunck W-H, Kärgel E (1991b) Cytochrome P-450 of alkene-utilizing yeast In: Ruckpaul K (ed) Frontiers in biotransformations, vol 4. Akademie-Verlag, Berlin, pp 87–126Google Scholar
  30. Murray WD, Duff SJB (1990) Bio-oxidation of aliphatic and aromatic high molecular weight alcohols by Pichia pastoris alcohol oxidase. Appl Microbiol Biotechnol 33:202–205Google Scholar
  31. Riege P, Schunck W-H, Honeck H, Müller H-G (1981) Cytochrome P-450 from Lodderomyces elongisporus: its purification and some properties of the highly purified protein. Biochem Biophys Res Commun 98:527–534Google Scholar
  32. Sanglard D, Fiechter A (1989) Heterogeneity within the alkene-inducible cytochrome P-450 gene family of the yeast Candida tropicalis. FEBS Lett 256:128–134Google Scholar
  33. Sapozhnikova GP, Krauzova VI (1979) The activity and substrate specificity of alcohol dehydrogenases from yeasts oxidizing n-alkenes. Mikrobiologiya 48:793–797Google Scholar
  34. Schubert F, Mauersberger S, Schunck W-H, Passarge M (1985) Verfahren und Biosensor zur Bestimmung von mittel- und langkettigen Alkoholen. GRD patent no. WP GO1N/2782286Google Scholar
  35. Schunck W-H, Mauersberger S, Kärgel E, Huth J, Müller H-G (1987) Function and regulation of cytochrome P-450 in alkene-assimilating yeast. II. Effect of oxygen limitation. Arch Microbiol 147:245–248Google Scholar
  36. Schunck W-H, Vogel F, Gross B, Kärgel E, Mauersberger S, Köpke K, Müller H-G (1991) Comparison of two cytochrome P-450 from Candida maltosa: primary structures, substrate specificities and effects of their expression in Saccharomyces cerevisiae on the proliferation of the endoplasmic reticulum. Eur J Cell Biol 55:336–345Google Scholar
  37. Sharyshev AA (1991) Subcellular organization of the oxidative metabolism in alkene-utilizing yeasts. In: Finogenova TV, Sharyshev AA (eds) Proceedings of the workshop on mechanisms of microbial n-alkene oxidation and oversynthesis of metabolites, Centre for Biological Research, USSR Academy of Sciences, Pushchino, USSR. (in press).Google Scholar
  38. Shilowa NK, Matyashova RN, Ilchenko AP (1989) The effect of aeration on the activity of alcohol oxidase and enzymes utilizing hydrogen peroxide in the course of Candida maltosa growth on paraffin. Mikrobiologiya 58:430–435Google Scholar
  39. Sonnet PE (1987) Kinetic resolutions of aliphatic alcohols with a fungal lipase from Mucor miehei. J Org Chem 52:4377–4379Google Scholar
  40. Tanaka A, Ueda M, Okada H, Fukui S (1988) Formation of several enzymes associated with alkene utilization by yeast. Ann NY Acad Sci 501:449–453Google Scholar
  41. Yamada T, Nawa H, Kawamoto S, Tanaka A, Fukui S (1980) Subcellular localization of long-chain alcohol dehydrogenase and aldehyde dehydrogenase in n-alkene grown Candida tropicalis. Arch Microbiol 128:145–151Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Stephan Mauersberger
    • 1
  • Hannelore Drechsler
    • 1
  • Günther Oehme
    • 2
  • Hans-Georg Müller
    • 1
  1. 1.Department of EnzymologyCentral Institute of Molecular BiologyBerlin-BuchFederal Republic of Germany
  2. 2.Division of Complex CatalysisCentral Institute of Organic ChemistryRostockFederal Republic of Germany

Personalised recommendations