Advertisement

Applied Microbiology and Biotechnology

, Volume 32, Issue 5, pp 505–510 | Cite as

Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation

  • Johannes Meiwes
  • Hans-Peter Fiedler
  • Hans Zähner
  • Silvia Konetschny-Rapp
  • Günther Jung
Biotechnology

Summary

Streptomyces olivaceus TÜ 2718 produces the siderophore desferrioxamine E. Production depends on l-lysine and iron concentrations in the medium. With optimized conditions the yield of desferrioxamine E could be increased to 12g/1 in feeding fermentations. Supplementation of the basic production medium with natural and synthetic precursors of desferrioxamine E led to the production of twelve new analogues of desferrioxamine E.

Keywords

Iron Fermentation Streptomyces Iron Concentration Production Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berner I, Konetschny-Rapp S, Jung G, Winkelmann G (1988) Characterization of desferrioxamine E as the principal siderophore of Erwinia herbicola (Enterobacter agglomerans). Biol Metals 1:51–56Google Scholar
  2. Braun V (1985) The iron transport system of E. coli. In: Martonosi AN (ed) Enzymes of biological membranes, vol 3. Plenum Press, New York, London, pp 617–651Google Scholar
  3. Fiedler HP, Meiwes J, Werner I, Konetschny-Rapp S, Jung G (1990) Identification of new ferrioxamines by HPLC and diode array detection. J Chromatogr (in press)Google Scholar
  4. Fiedler HP, Plaga A (1987) Separation of amino acids and antibiotics by narrow-bore and normal bore high-performance liquid chromatography with pre-column derivatization. J Chromatogr 386:229–241Google Scholar
  5. Fiedler HP, Walz F, Döhle A, Zähner H (1985) Albomycin: studies on fermentation, isolation and quantitative determination. Appl Microbiol Biotechnol 21:341–347Google Scholar
  6. Kameyama T, Takahashi A, Kurasawa S, Ishizuka M, Okami Y, Takeuchi T, Umezawa H (1987) Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage-mediated cytolysis. I. Taxonomy of the producing organism, isolation and biological properties. J Antibiot 40:1664–1670Google Scholar
  7. Kappner M, Hasenböhler A, Zähner H (1977) Stoffwechselprodukte von Mikroorganismen. 166. Mitteilung Optimierung der Desferri-Ferricrocinbildung bei Aspergillus viridi-nutans Ducker & Thrower. Arch Microbiol 115:323–331Google Scholar
  8. Keller-Schierlein W, Prelog V, Zähner H (1964) Siderochrome. (Natürliche Eisen(III)-trihydroxamat-Komplexe). Fortschr Chem Org Naturst 22:279–322Google Scholar
  9. Meyer JM, Abdallah MA (1980) The siderophores of non-fluorescent pseudomonads: production of nocardamine by Pseudomonas stutzeri. J Gen Microbiol 118:125–129Google Scholar
  10. Müller A, Zähner H (1968) Stoffwechselprodukte aus Mikroorganismen 65. Ferrioxamine aus Eubacteriales. Arch Mikrobiol 62:257–263Google Scholar
  11. Peter HH (1985) Industrial aspects of iron chelators: pharmaceutical applications. In: Spik G, Montreuil J, Gichton RR, Mazwier J (eds) Proteins of iron storage and trasnport. Elsevier, Amsterdam, pp 293–303Google Scholar
  12. Plaga A, Stümpfel J, Fiedler HP (1989) Determination of carbohydrates in fermentation processes by high-performance liquid chromatography. Appl Microbiol Biotechnol 32:45–49Google Scholar
  13. Plattner HJ, Pfefferle P, Romaguera A, Waschütza S, Dieckmann H (1989) Isolation and some properties of lysine N 6-hydroxylase from Escherichia coli strain EN 222. Biol Metals, in pressGoogle Scholar
  14. Ruttloff H, Huber J, Zwickler F, Mangold KH (1978) Industrielle Enzyme. VEB Fachbuchhandlung, LeipzigGoogle Scholar
  15. Schupp T, Toupet C, Divers M (1988) Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene 64:179–188Google Scholar
  16. Stevens RL, Emery TF (1966) The biosynthesis of hadacidin. Biochemistry 5:74–81Google Scholar
  17. Stoll A, Brack A, Renz J (1951) Nocardamin, ein neues Antibioticum aus einer Nocardia Art. Schweiz Z. Pathol Bacteriol 14:225–233Google Scholar
  18. Takahashi A, Nakamura H, Kameyama T, Kurasawa S, Naganawa H, Okami Y, Takeuchi T, Umezawa H (1987) Bisucaberin, a new siderophore, sensitizing tumor cells to macrophage mediated cytolysis. II. Physico-chemical properties and structure determination. J Antibiot 40:1671–1676Google Scholar
  19. Winkelmann G (1986) Iron complex products. In: Rehm HJ, Reed G (eds) Biotechnology, vol 4. Verlag Chemie, Weinheim, pp 216–243Google Scholar
  20. Zähner H, Bachmann B, Hütter R, Nüesch J (1962) Sideramine eisenhaltige Wachstumsfaktoren aus Mikroorganismen. Pathol Microbiol 25:108–136Google Scholar
  21. Zubay G (1983) Biochemistry. Addison Wesley, Reading Menlo Park London Amsterdam Don Mills SydneyGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Johannes Meiwes
    • 1
  • Hans-Peter Fiedler
    • 1
  • Hans Zähner
    • 1
  • Silvia Konetschny-Rapp
    • 2
  • Günther Jung
    • 2
  1. 1.Lehrbereich Mikrobiologie/AntibiotikaUniversität TübingenTübingenFederal Republic of Germany
  2. 2.Institut für Organische ChemieUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations