Space Science Reviews

, Volume 39, Issue 1–2, pp 193–213 | Cite as

Energetics of the magnetosphere

  • David P. Stern


Energy flow in various large-scale processes of the Earth's magnetosphere is examined. This energy comes from the solar wind, via the dawn-to-dusk convection electric field, a field established primarily by magnetic merging but with viscous-like boundary interaction as a possible contributor. The convection field passes about 5 × 1011 W to the near-Earth part of the plasma sheet, and also moves the plasma earthward. In addition, 1–3 × 1011 W are given to the complex system of the Birkeland currents: about 4 × 1010 of this, on the average, goes to parallel acceleration, chiefly of auroral electrons, about 2–3 times that amount to joule heating of the ionosphere, and the rest heats the ring current. The ring current stores energy (mainly as kinetic energy of particles) of the order of 2 × 1015 J, and this value rises and decays during magnetic storms, on time scales ranging from a fraction of a day to several days. The tail can store comparable amounts as magnetic energy, and appreciable fractions of its energy may be released in substorms, on time scales of tens of minutes. The sporadic power level of such events reaches the order of 3 × 1012 W. The role of magnetic merging in such releases of magnetic energy is briefly discussed, as is the correlation between properties of the solar wind and magnetospheric power levels.


Convection Solar Wind Power Level Magnetic Storm Magnetic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasofu, S.-I.: 1979, ‘Relationship between the Growth of the Ring Current and the Interplanetary Quantity ɛ’, Planet. Space Sci. 27, 1039–1041.Google Scholar
  2. Akasofu, S.-I.: 1980, ‘The Solar Wind-Magnetosphere Energy Coupling and Magnetospheric Disturbances’, Planet. Space Sci. 28, 495–509.Google Scholar
  3. Akasofu, S.-I.: 1981, ‘Energy Coupling between the Solar Wind and the Magnetosphere’, Space Sci. Rev. 28, 121–190.Google Scholar
  4. Ahn, B.-H., Akasofu, I.-S., and Kamide, Y.: 1983, ‘The Joule Heat Production Rate and the Particle Energy Injection Rate as a Function of the Geomagnetic Indices AE and AL’, J. Geophys. Res. 88, 6275–87.Google Scholar
  5. Arnoldy, R. L.: 1971, ‘Signature of the Interplanetary Medium for Substorms’, J. Geophys. Res. 76, 5189–5201.Google Scholar
  6. Baker, D. N., Hones, E. W., Jr., Higbie, P. R., Belian, R. D., and Stauning, P.: 1981, ‘Global Properties of the Magnetosphere during a Substorm Growth Phase: A Case Study’, J. Geophys. Res. 86, 8941–56.Google Scholar
  7. Baker, D. N., Zwickl, R. D., Bame, S. J., Hones, E. W., Tsurutani, B. T., Smith, E. J., and Akasofu, S.-I.: 1983, ‘An ISEE-3 High Time Resolution Study of Interplanetary Parameter Correlations with Magnetospheric Activity’, J. Geophys. Res. 88, 6230–6242.Google Scholar
  8. Bleuler, E., Li, C. H., and Nisbet, J. S.: 1982, ‘Relationships between the Birkeland Currents, Ionospheric Currents and Electric Fields’, J. Geophys. Res. 87, 757–776.Google Scholar
  9. Boström, R.: 1964, ‘A Model of the Auroral Electrojets’, J. Geophys. Res. 69, 4983–4999.Google Scholar
  10. Burton, R. K., McPherron, R. L., and Russell, C. T.: 1975, ‘An Empirical Relationship between Interplanetary Condictions and Dst’, J. Geophys. Res. 80, 4204–4214.Google Scholar
  11. Burch, J. L.: 1983, ‘Energy Transfer in the Quiet and Disturbed Magnetosphere’, Rev. Geophys. Space Phys. 21, 463–473.Google Scholar
  12. Burch, J. L., Reiff, P. H., and Sugiura, M.: 1983, ‘Upward Electron Beams Measured by DE-1: A Primary Source of Dayside Region-1 Birkeland Currents’, Geophys. Res. Letters 10, 753–756.Google Scholar
  13. Caan, M. N., McPherron, R. L., and Russell, C. T.: 1973, ‘Solar Wind and Substorm-Related Changes in the Lobes of the Geomagnetic Tail’, J. Geophys. Res. 78, 8087–96.Google Scholar
  14. Carovillano, R. L. and Siscoe, G. L.: 1973, ‘Energy and Momentum Theorems in Magnetospheric Processes’, Rev. Geophys. Space Phys. 11, 289–353.Google Scholar
  15. Chapman, S. and Bartels, J.: 1940, Geomagnetism, Oxford Univ. Press, New York.Google Scholar
  16. Davis, T. N.: 1969, ‘Temporal Behavior of Energy Injection into the Geomagnetic Ring Current’, J. Geophys. Res. 74, 6266–6274.Google Scholar
  17. Dessler, A. J. and Parker, E. N.: 1959, ‘Hydromagnetic Theory of Geomagnetic Storms’, J. Geophys. Res. 64, 2239–2252.Google Scholar
  18. Evans, D. S. and Viola, J.: Hill, 1980, ‘Auroral Particle Flux Observations from Tiros-N and NOAA-6 during the Period November 1978 to September 1980 (abstract SA-55; see also SA-54)’, EOS 61, 1060.Google Scholar
  19. Fairfield, D. H., Hones, E. W., Jr., and Meng C.-I.: 1981, ‘Multiple Crossings of a Very Thin Plasma Sheet in the Earth's Magnetotail’, J. Geophys. Res. 86, 11189–11200.Google Scholar
  20. Foster, J. C., Fairfield, D. H., Ogilvie, K. W., and Rosenberg, T. J.: 1971, ‘Relationship of Interplanetary Parameters and the Occurence of Magnetospheric Substorms’, J. Geophys. Res. 76, 6971–6979.Google Scholar
  21. Foster, J. C., St. Maurice, J. P., and Abreu, J. V.: 1983, ‘Joule Heating at High Latitudes’, J. Geophys. Res. 88, 4885–4896.Google Scholar
  22. Fukushima, N.: 1976, ‘Generalized Theorem for no Ground Magnetic Effect of Vertical Currents Connected with Pedersen Currents in the Uniform-Conductivity Ionosphere’, Rep. Ionosph. Space Res. Japan 30, 35–40.Google Scholar
  23. Fujii, R., Iijima, T., Potemra, T. A., and Sugiura, M.: 1981, ‘Seasonal Dependence of Large-Scale Birkeland Currents’, Geophys. Res. Letters 8, 1103–1106.Google Scholar
  24. Greenwald, R. A. and Walker, A. D. M.: 1980, ‘Energetics of Long Period Resonant Hydromagnetic Waves’, Geophys. Res. Letters 7, 745–748.Google Scholar
  25. Gurnett, D. A.: 1974, ‘The Earth as a Radio Source: Terrestrial Kilometric Radiation’, J. Geophys. Res. 79, 4227–4238.Google Scholar
  26. Hardy, D. A., Burke, W. J., Gussenhoven, M. S., Heinemann, N., and Holeman, E.: 1981, ‘DMSP/F2 Electron Observations of Equatorward Auroral Boundaries and their Relationship to the Solar Wind Velocity and the North-South Component of the Interplanetary Magnetic Field’, J. Geophys. Res. 86, 9961–9974.Google Scholar
  27. Holzer, R. E. and Slavin, J. A.: 1983, J. Geophys. Res. 88, 4955–4958.Google Scholar
  28. Hones, E. W., Jr.: 1979, ‘Transient Phenomena in the Magnetotail and their Relation to Substorms’, Space Sci. Rev. 23, 393–410.Google Scholar
  29. Howe, C. H., Jr. and Binsack, J. H.: 1972, ‘Explorer 33 and 35 Plasma Observations of Magnetosheath Flow’, J. Geophys. Res. 77, 3334–3344.Google Scholar
  30. Iijima, T. and Potemra, T. A.: 1976, ‘The Amplitude Distribution of Field-Aligned Currents at Northern High Latitudes Observed by Triad’, J. Geophys. Res. 81, 2165–2174.Google Scholar
  31. Jaggi, R. K. and Wolf, R. A.: 1973, ‘Self-Consistent Calculation of the Motion of a Sheet of Ions in the Magnetosphere’, J. Geophys. Res. 78, 2852–2866.Google Scholar
  32. Kamide, Y. and Fukushima, N.: 1971, ‘Analysis of Magnetic Storms with DR Indices for Equatorial Ring Current Field’, Rep. Ionosph. Space Res. Japan 25, 125–162.Google Scholar
  33. Kan, J. R. and Lee, L. C.: 1979, ‘Energy Coupling Function and Solar Wind-Magnetosphere Dynamo’, Geophys. Res. Letters 6, 577–580.Google Scholar
  34. Kan, J. R., Lee, L. C., and Akasofu, S.-I.: 1980, ‘The Energy Coupling Function and the Power Generated by the Solar Wind Magnetosphere Dynamo’, Planet. Space Sci. 28, 823–825.Google Scholar
  35. Kan, J. R. and Akasofu, S.-I.: 1982, ‘Dynamo Process Governing Solar Wind-Magnetosphere Energy Coupling’, Planet. Space Sci. 30, 367–370.Google Scholar
  36. Langel, R. A. and Estes, R. H.: 1983, ‘Large-Scale, Near-Earth, Magnetic Fields from External Sources and the Corresponding Induced Internal Sources’, NASA technical memorandum TM-85012.Google Scholar
  37. Lyons, L. R. and Speiser, T. W.: 1982, ‘Evidence for Current Sheet Acceleration in the Geomagnetic Tail’, J. Geophys. Res. 87, 2276–2286.Google Scholar
  38. Mayaud, P. N.: 1980, Derivation, Meaning and Use of Geomagnetic Indices, AGU, Washington, D.C.Google Scholar
  39. Meng, C.-I.: 1980, in S.-I. Akasofu (ed.), ‘Polar Cap Variations and the Interplanetary Magnetic Field’, Dynamics of the Magnetosphere, D. Reidel Publ. Co., Dordrecht, Holland, p. 23–46.Google Scholar
  40. Meng, C.-I., Lui, A. T. Y., Krimigis, S. M., Ismail, S., and Williams, D. J.: 1981, ‘Spatial Distribution of Energetic Particles in the Distant Magnetotail’, J. Geophys. Res. 86, 5682–5700.Google Scholar
  41. Murayama, T.: 1982, ‘Coupling Function between Solar Wind Parameters and Geomagnetic Indices’, Rev. Geophys. Space Phys. 20, 623–629.Google Scholar
  42. Olbert, S., Siscoe, G. L., and Vasyliunas, V. M.: 1968, ‘A Simple Derivation of the Dessler-Parker-Sckopke Relation’, J. Geophys. Res. 73, 1115–1116.Google Scholar
  43. Parker, E. N.: 1962, ‘Dynamics of the Geomagnetic Storm’, Space Sci. Rev. 1, 62–99.Google Scholar
  44. Perreault, P. and Akasofu, S.-I.: 1978, ‘A Study of Geomagnetic Storms’, Geophys. J. Roy. Astron. Soc. 54, 547–573.Google Scholar
  45. Reiff, P. H., Spiro, R. W., and Hill, T. W.: 1981, ‘Dependence of Polar Cap Potential Drop on Interplanetary Parameters’, J. Geophys. Res. 86, 7639–48.Google Scholar
  46. Reiff, P. H., Spiro, R. W., and Hill, T. W.: 1982, ‘Dependence of Polar Cap Potential Drop on Interplanetary Parameters’, J. Geophys. Res. 87, 2579.Google Scholar
  47. Rostoker, G.: 1972, ‘Geomagnetic Indices’, Rev. Geophys. Space Phys. 10, 935–950.Google Scholar
  48. Russell, C. T. and Elphic, R. C.: 1979, ‘ISEE Observations of Flux Transfer Events at the Dayside Magnetopause’, Geophys. Res. Letters 6, 33–36.Google Scholar
  49. Schield, M. A., Freeman, J. W., and Dessler, A. J.: 1969, ‘A Source for Field-Aligned Currents at Auroral Latitudes’, J. Geophys. Res. 74, 247–256.Google Scholar
  50. Sckopke, N.: 1966, ‘A General Relation between the Energy of Trapped Particles and the Disturbance Field over the Earth’, J. Geophys. Res. 71, 3125–3130.Google Scholar
  51. Sckopke, N.: 1972, ‘A Study of Self-Consistent Ring Current Models’, Cosmic Electrodyn. 3, 330–348.Google Scholar
  52. Scudder, J. D.: 1984, ‘Fluid Signatures of Rotational Discontinuities at the Earth's Magnetopause’, J. Geophys. Res. (in press).Google Scholar
  53. Sharp, R. D. and Johnson, R. G.: 1968, ‘Some Average Properties of Auroral Electron Precipitation as Determined from Satellite Observations’, J. Geophys. Res. 73, 969–990.Google Scholar
  54. Siscoe, G. L.: 1982a, ‘Energy Coupling between Regions 1 and 2 Birkeland Current Systems’, J. Geophys. Res. 87, 5124–30.Google Scholar
  55. Siscoe, G. L.: 1982b, ‘Polar Cap Size and Potential: A Predicted Relationship’, Geophys. Res. Letters 9, 672–675.Google Scholar
  56. Siscoe, G. L., Formisano, V., and Lazarus, A. J.: 1966, ‘Relation between Geomagnetic Sudden Impulses and Solar Wind Pressure Changes — An Experimental Investigation’, J. Geophys. Res. 73, 4869–4874.Google Scholar
  57. Siscoe, G. L. and Cummings, W. D.: 1969, ‘On the Cause of Geomagnetic Bays’, Planet. Space Sci. 17, 1795–1802.Google Scholar
  58. Siscoe, G. L. and Crooker, N. U.: 1983, in T. A. Potemra (ed.), ‘Coupling of Birkeland Current Rings’, Magnetospheric Currents, p. 260–268.Google Scholar
  59. Slavin, J.A., Tsurutani, B. T., Smith, E. J., Jones, D. E., and Sibeck, D. G.: 1983, ‘Average Configuration of the Distant (< 220 R e) Magnetotail: Initial ISEE-3 Magnetic Field Results’, Geophys. Res. Letters 10, 973–976.Google Scholar
  60. Smith, P. H., Hoffman, R. A., and Fritz, T. A.: 1976, ‘Ring Current Proton Decay by Charge Exchange’, J. Geophys. Res. 81, 2701–2708.Google Scholar
  61. Sonnerup, B. U. O.: 1971, ‘Adiabatic Particle Orbits in a Magnetic Null Sheet’, J. Geophys. Res. 76, 8211–8222.Google Scholar
  62. Sonnerup, B. U. O.: 1974, ‘Magnetopause Reconnection Rate’, J. Geophys. Res. 79, 1546–1549.Google Scholar
  63. Southwood, D. J.: 1977, ‘The Role of Hot Plasma in Magnetospheric Convection’, J. Geophys. Res. 82, 5512–5520.Google Scholar
  64. Spiro, R. W., Reiff, P. H., and Maher, L. H., Jr.: 1982, ‘Precipitating Electron Energy Flux and Auroral Zone Conductances — An Empirical Model’, J. Geophys. Res. 87, 8215–8227.Google Scholar
  65. Stern, D. P.: 1979, ‘The Role of O-Type Neutral Lines in Magnetic Merging during Substorms and Solar Flares’, J. Geophys. Res. 84, 63–71.Google Scholar
  66. Stern, D. P.: 1980, ‘Energetics of the Magnetosphere’, NASA Technical Memorandum TM 82039, November 1980; abstracted in EOS 61, 1069.Google Scholar
  67. Stern, D. P.: 1983a, ‘The Origins of Birkeland Currents’, Rev. Geophys. Space Phys. 21, 125–138.Google Scholar
  68. Stern, D. P.: 1983b, in T. A. Potemra (ed.), ‘Magnetospheric Dynamo Processes’, Magnetospheric Currents, p. 200–207.Google Scholar
  69. Sugiura, M.: 1980, ‘What Do We Expect in Magnetic Activity in the Current Solar Cycle?’, EOS 61, 673–675.Google Scholar
  70. Tinsley, B. A.: 1976, ‘Evidence that the Recovery Phase Ring Current Consists of Helium Ions’, J. Geophys. Res. 81, 6193–6196.Google Scholar
  71. Vasyliunas, V. M.: 1970, in B. M. McCormac (ed.), ‘Mathematical Models of the Magnetospheric Convection and its Coupling to the Ionosphere’, Particles and Fields in the Magnetosphere, p. 60–71.Google Scholar
  72. Vasyliunas, V. M.: 1972, in B. M. McCormac (ed.), ‘The Interrelationship of Magnetospheric Processes’, Earth's Magnetospheric Processes, D.Reidel Publ. Co., Dordrecht, Holland, p. 29–38.Google Scholar
  73. Vasyliunas, V. M.: 1975, ‘Theoretical Models of Magnetic Field Line Merging, I’, Rev. Geophys. Space Phys. 13, 303–336.Google Scholar
  74. Vasyliunas, V. M.: 1979, ‘Upper Limit on the Electric Field Along a Magnetic O Line’, J. Geophys. Res. 84, 4616–4620.Google Scholar
  75. Wygant, J. R., Torbert, R. B., and Mozer, F. S.: 1983, ‘Comparison of S3–3 Polar Cap Potential Drops with the Interplanetary Magnetic Field and Models of Magnetopause Reconnection’, J. Geophys. Res. 88, 5727–5735.Google Scholar
  76. Young, D. T.: 1983, ‘Near Equatorial Magnetospheric Particles from ∼ 1 eV to ∼ 1 MeV’, Rev. Geophys. Space Phys. 21, 402–418.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • David P. Stern
    • 1
  1. 1.Planetary Magnetospheres BranchGoddard Space Flight CenterGreenbeltUSA

Personalised recommendations