Space Science Reviews

, Volume 39, Issue 1–2, pp 153–161 | Cite as

Dimensional fundamental constants and their application in astronomy

  • Paul S. Wesson


A discussion is given of the role of dimensional fundamental constants in gravitational and particle physics. It is concluded that such constants can most usefully be interpreted as representing asymptotic states. This interpretation is in agreement with the widespread use of dimensional analysis in astronomy, and implies that angular momentum can be expected to vary like the mass squared in the astronomical limit of large masses.


Angular Momentum Large Mass Particle Physic Dimensional Analysis Asymptotic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Birkhoff, G.: 1960, Hydrodynamics, Princeton University Press, Princeton, N.J.Google Scholar
  2. Bridgman, P. W.: 1922, Dimensional Analysis, Yale University Press, New Haven, Ct.Google Scholar
  3. Brosche, P.: 1980, in P. G. Bergmann and V. De Sabbata (eds.), Cosmology and Gravitation (Spin, Torsion, Rotation and Supergravity), Plenum Press, New York, p. 375.Google Scholar
  4. Bunge, M.: 1967, Foundations of Physics, Springer, New York.Google Scholar
  5. Bunge, M.: 1971, in M. Bunge (ed.), Problems in the Foundations of Physics, Springer, Berlin, p. 1.Google Scholar
  6. Carrasco, L., Roth, M., and Serrano, A.: 1982, Astron. Astrophys. 106, 89.Google Scholar
  7. De Sabbata, V. and Gasperini, M.: 1983, Letters, Nuovo Cimento 38, 93.Google Scholar
  8. Dorrington, G. E.: 1982, Letters, Nuovo Cimento 34, 409.Google Scholar
  9. Fleck, R. C.: 1982, Astrophys. J. 261, 631 (Erratum, ibid.: 1983, 267, 891).Google Scholar
  10. Giancoli, D. C.: 1980, Physics, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  11. Henriksen, R. N. and Wesson, P. S.: 1978, Astrophys. Space Sci. 53, 429.Google Scholar
  12. Henriksen, R. N., Emslie, A. G., and Wesson, P. S.: 1983, Phys. Rev. D27, 1219.Google Scholar
  13. Kurth, R.: 1972, Dimensional Analysis and Group Theory in Astrophysics, Pergamon, New York.Google Scholar
  14. Langhaar, H.: 1951, Dimensional Analysis and Theory of Models, Wiley, New York.Google Scholar
  15. Tolman, R. C.: 1915, Phys. Rev. 6, 219.Google Scholar
  16. Wesson, P. S.: 1978, Cosmology and Geophysics, Hilger, Bristol, U.K.Google Scholar
  17. Wesson, P. S.: 1979, Astron. Astrophys. 80, 296.Google Scholar
  18. Wesson, P. S.: 1980a, Space Sci. Rev. 27, 109.Google Scholar
  19. Wesson, P. S.: 1980b, Gravity, Particles, and Astrophysics, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  20. Wesson, P. S.: 1981, Phys. Rev. D23, 1730.Google Scholar
  21. Wesson, P. S.: 1983, Astron. Astrophys. 119, 313.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • Paul S. Wesson
    • 1
  1. 1.Department of PhysicsUniversity of WaterlooWaterlooCanada

Personalised recommendations