Applied Microbiology and Biotechnology

, Volume 40, Issue 5, pp 699–709

Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases

  • Henry E. Valentin
  • Alexander Steinbüchel
Applied Microbial and Cell Physiology


Various hydroxyacyl coenzyme A (CoA) thioesters were synthesized from the corresponding hydroxyalkanoic acid (such as e.g. [3-14C]d-(−)-hydroxybutyric acid, [1-14C]d-lactic acid, [1-14C]l-lactic acid, etc.) and from acetyl-CoA employing the propionate CoA transferase of Clostridium propionicum. Preparative isolation of the thioesters on hydrophobic matrices and analysis by HPLC are reported. These thioesters were subjected to a radiometric or a spectrometric assay of polyhydroxyalkanoic acid (PHA) synthase activity. The latter was based on the release of CoA from, for example, d-(−)-3-hydroxybutyryl-CoA, which was detected spectroscopically at 412 nm by reduction of 5,5′-dithiobis(2-nitrobenzoic acid) and provided a convenient assay of poly(3-hydroxybutyrate) synthase. When [1-14C]lactyl-CoA was used as substrate in a PHA synthase assay employing crude extracts obtained from various wild-type strains, [1-14C]lactyl-CoA was used as a substrate at a rate that was only less than 10−4 of the rate than with [3-14C]d-(−)-3-hydroxybutyryl-CoA or was negligible. One exception was a recombinant strain of Escherichia coli, which overexpressed the PHA synthase complex of Chromatium vinosum and which used [1-14C]d-lactyl-CoA as substrate at a relatively high rate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedGoogle Scholar
  2. Anderson AJ, Haywood GW, Williams DR, Dawes EA (1990) The production of polyhydroxyalkanoates from unrelated carbon sources. In: Dawes EA (ed) Novel biodegradable microbial polymers. Kluwer, Dordrecht, pp 119–129Google Scholar
  3. Bullock WO, Fernandez JM, Stuart JM (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques 5:376–379Google Scholar
  4. Bousfield IJ, Green PN (1985) Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole and Hanson) emend. Green and Bousfield 1983. Int J Syst Bacteriol 32:209Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  6. Davis DH, Doudoroff M, Stanier RY, Mandel M (1969) Proposal to reject the genus Hydrogenomonas: taxomomic implications. Int J Syst Bacteriol 19:375–390Google Scholar
  7. Decker K (1959) Die aktivierte Essigsäure. Ferdinand Enke, StuttgartGoogle Scholar
  8. Decker K (1962) l-(+)-β-Hydroxybutyryl-Coenzym A. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse, 1st edn. Verlag Chemie GmbH, Weinheim, pp 441–444Google Scholar
  9. Decker K (1985a) Acetyl coenyzme A. In: Bergmeyer HU, Bergmeyer J, Grassl M (eds) Methods of enzymatic analysis, vol 7, 3rd edn. VCH, Weinheim, pp 186–193Google Scholar
  10. Decker K (1985b) Acetyl coenzyme A. In: Bergmeyer HU, Bergmeyer J, Grassl M (eds) Methods of enzymatic analysis, vol 7, 3rd edn. VCH, Weinheim, pp 201–206Google Scholar
  11. De Buysere MS, Olson MS (1983) The analysis of acyl-coenzyme A derivatives by reverse-phase high performance liquid chromatography. Anal Biochem 133:373–379Google Scholar
  12. De Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878Google Scholar
  13. Doi Y, Tamaki A, Kunioka M, Soga K (1987) Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol Chem Rapid Commun 8:631–635Google Scholar
  14. Ellmann GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77Google Scholar
  15. Fründ C, Priefert H, Steinbüchel A, Schlegel HG (1989) Biochemical and genetic analysis of acetoin catabolism in Alcaligenes eutrophus. J Bacteriol 171:6539–6548Google Scholar
  16. Fukui T, Yoshimoto A, Matsumoto M, Hosokawa S, Saito T, Nishikawa H, Tomita K (1976) Enzymatic synthesis of poly-β-hydroxybutyrate in Zoogloea ramigera. Arch Microbiol 110:149–156Google Scholar
  17. Haywood GW, Anderson AJ, Dawes EA (1989a) The importance of PHB-synthase substrate speficity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6Google Scholar
  18. Haywood GW, Anderson AJ, Dawes EA (1989b) A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnol Lett 11:471–476Google Scholar
  19. Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. NCIMB 40135. Appl Environ Microbiol 56:3354–3359Google Scholar
  20. Hilger U, Sattler K, Littkowsky U (1991) Untersuchungen zur Wachstums-assoziierten Akkumulation von Poly-β-hydroxybuttersäure bei Methylobacterium rhodesianum. Z Zentralbl Mikrobiol 146:83–88Google Scholar
  21. Holmes PA, Wright LF, Collins SH (1981) β-Hydroxybutyrate polymers. European patent application no. EP 052459Google Scholar
  22. Hosokawa Y, Shinomura Y, Harris RA, Ozawa T (1986) Determination of short-chain acyl-coenzyme A esters by high-performance liquid chromatography. Anal Biochem 153:45–49Google Scholar
  23. Huismann GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198Google Scholar
  24. Hustede E, Steinbüchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biotechnol 39:87–93Google Scholar
  25. Kaudewitz F (1959) Inaktivierende und mutagene Wirkung salpetriger Säure auf Zellen von Escherichia coli. Z Naturforsch 14b:528–537Google Scholar
  26. King MT, Reiss PD (1985) Separation and measurement of short-chain coenzyme A compounds in rat liver by reversed-phase high performance liquid chromatography. Anal Biochem 146:173–179Google Scholar
  27. Kuchta RD, Abeles RH (1985) Lactate reduction in Clostridium propionicum. J Biol Chem 260:13181–13189Google Scholar
  28. Kunioka M, Nakamura Y, Doi Y (1988) New Bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polymer Commun 29:174–176Google Scholar
  29. Lemoigne M (1926) Produits de deshydration et de polymerisation de lácide β-oxybutyric. Bull Soc Chim Biol (Paris) 8:770–782Google Scholar
  30. Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of polyhydroxyalkanoic acid in Chromatium vinosum. Eur J Biochem 209:135–150Google Scholar
  31. Liebergesell M, Steinbüchel A (1993) Cloning and molecular characterization of the poly(3-hydroxybutyric acid) biosynthetic genes of Thiocystis violacea. Appl Microbiol Biotechnol 38:493–501Google Scholar
  32. Liebergesell M, Mayer F, Steinbüchel A (1993) Analysis of polyhydroxyalkanoic acid-biosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusual composition. Appl Microbiol Biotechno, in pressGoogle Scholar
  33. Mieyal JJ, Webster LT, Siddiqui UA (1974) Benzoyl and hydroxybenzoyl esters of coenzyme A. J Biol Chem 249:2633–2640Google Scholar
  34. Pedrós-Alio C, Mas J, Guerrero R (1985) The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus. Arch Microbiol 143:178–184Google Scholar
  35. Pieper U (1993) Biosynthese eines Copolymers aus 3-Hydroxybuttersäure und 3-Hydroxyvaleriansäure in Rhodococcus ruber NCIMB 40126: Physiologische, molekulargenetische und biochemische Untersuchungen. Dissertation, Georg-August-Universität GöttingenGoogle Scholar
  36. Pries A, Priefert H, Krüger N, Steinbüchel A (1991) Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the poly(β-hydroxybutyric acid)-leaky phenotype which exhibit homology to ptsH and ptsI of Escherichia coli. J Bacteriol 173:5843–5853Google Scholar
  37. Rogosa M (1969) Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic Gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol 98:756–766Google Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  39. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222PubMedGoogle Scholar
  40. Schlegel HB, Lafferty RM, Krauss I (1970) The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Microbiol 71:283–294Google Scholar
  41. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847Google Scholar
  42. Schubert P, Krüger N, Steinbüchel A (1991) Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthetic operon: identification of the N-terminus of poly(3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol 173:168–175Google Scholar
  43. Schweiger G (1986) Untersuchugunen zum Mechanismus der enzymatischen Dehydrierung von 2-Hydroxysäuren. Dissertation, Universität RegensburgGoogle Scholar
  44. Schweiger G, Buckel W (1984) On the dehydration of (R)-lactate in the fermentation of alanine to propionate by Clostridium propionicum. FEBS Lett 171:79–84Google Scholar
  45. Simon EJ, Shemin D (1953) The preparation of S-succinyl-coenzyme A. J Am Chem Soc 75:2520Google Scholar
  46. Steinbüchel A (1991a) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. MacMillan, London, pp 123–213Google Scholar
  47. Steinbüchel A (1991b) Polyhydroxyfettsäuren — thermoplastisch verformbare und biologisch abbaubare Polyester aus Bakterien. Nachrichtenbl Chem Tech Lab 39:1112–1124Google Scholar
  48. Steinbüchel A, Pieper U (1992) Production of a copolyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid by a mutant of Alcaligenes eutrophus from single unrelated carbon sources. Appl Microbiol Biotechnol 37:1–6Google Scholar
  49. Steinbüchel A, Schlegel HG (1981) Die relative Respirationsrate (RRR), ein neuer Belüftungsparameter. In: Lafferty RM (ed) Fermentation. Springer, Vienna, pp 11–26Google Scholar
  50. Steinbüchel A, Schlegel HG (1991) Genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542Google Scholar
  51. Steinbüchel A, Hustede E, Liebergesell M, Timm A, Pieper U, Valentin H (1992) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230Google Scholar
  52. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxy alkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367Google Scholar
  53. Valentin HE, Schönebaum A, Steinbüchel A (1992) Identification of 4-hydroxyvaleric acids as a constituent in biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 36:507–514Google Scholar
  54. Vert M (1986) Biomedical polymers from chiral lactides and functional lactones. Properties and applications. Macromol Chem Macromol Symp 6:109–122Google Scholar
  55. Webster LT, Killenberg PG (1981) Coenzyme A thioesters of benzoic, hydroxybenzoic, phenylacetic, and bile acids. Methods Enzymol 77:430–436Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Henry E. Valentin
    • 1
  • Alexander Steinbüchel
    • 1
  1. 1.Institut für Mikrobiologie der Georg-August-Universität GöttingenGöttingenGermany

Personalised recommendations