Advertisement

Applied Microbiology and Biotechnology

, Volume 40, Issue 5, pp 669–675 | Cite as

A general method for identification of polyhydroxyalkanoic acid synthase genes from pseudomonads belonging to the rRNA homology group I

  • Arnulf Timm
  • Stefan Wiese
  • Alexander Steinbüchel
Applied Genetics and Regulation

Abstract

Using a 30-mer oligonucleotide probe highly specific for polyhydroxyalkanoic acid (PHA) synthase genes, the respective genes of Pseudomonas citronellolis, P. mendocina, Pseudomonas sp. DSM 1650 and Pseudomonas sp. GP4BH1 were cloned from genomic libraries in the cosmid pHC79. A 19.5-kbp and a 22.0-kbp EcoRI restriction fragment of P. citronellolis or Pseudomonas sp. DSM 1650, respectively, conferred the ability to accumulate PHA of medium-chain-length 3-hydroxyalkanoic acids (HA mcl ) from octanoate as well as from gluconate to the PHA-negative mutant P. putida GPp104. An 11.0-kbp EcoRI fragment was cloned from P. mendocina, which restored in GPp104 the ability to synthesize PHA from octanoate but not from gluconate. From Pseudomonas sp. GP4BH1 three different genomic fragments encoding PHA synthases were cloned. This indicated that strain GP4BH1 possesses three different functionally active PHA synthases. Two of these fragments (6.4 kbp and 3.8 kbp) encoded for a PHA synthase, preferentially incorporating hydroxyalkanoic acids of short chain length (HA scl ), and the synthases were expressed in either GPp104 and Alcaligenes eutrophus H16-PHB4, respectively. The PHA synthase encoded by the third fragment (6.5 kbp) led to the incorporation of HA mcl and was expressed in GPp104 but not in PHB4.

Keywords

Pseudomonas Gluconate Homology Group Genomic Fragment Alcaligenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedGoogle Scholar
  2. Brandl H, Gross RA, Lenz RW, Fuller RC (1988) Pseudomonas oleovorans as a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982Google Scholar
  3. Deretic V, Chandrasekharappa S, Gill JF, Chatterjee DK, Chakrabarty AM (1987) A set of cassettes and improved vectors for genetic and biochemical characterization of Pseudomonas genes. Gene 57:61–72Google Scholar
  4. DeSmet M, Eggink G, Witholt B, Kingma J (1983) Characerization of intracellular inclusions formed by Pseudomonas olveovorans during growth on octane. J Bacteriol 154:870–878Google Scholar
  5. Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205Google Scholar
  6. Fründ C, Priefert H, Steinbüchel A, Schlegel HG (1989) Biochemical and genetic analysis of acetoin catabolism in Alcaligenes eutrophus. J Bacteriol 171:6539–6548Google Scholar
  7. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMedGoogle Scholar
  8. Haywood GW, Anderson AJ, Dawes EA (1989) A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnol Lett 11:471–476Google Scholar
  9. Haywood GW, Anderson AJ, Ewing DF, Dawes EA (1990) Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB40135. Appl Environ Microbiol 56:3354–3359Google Scholar
  10. Hohn B, Collins J (1980) A small cosmid for efficient cloning of large DNA fragments. Gene 11:291–298Google Scholar
  11. Huijberts GNM, Eggink G, DeWaard P, Huisman GW, Witholt B (1992) P. putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544Google Scholar
  12. Huisman GW, DeLeeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954Google Scholar
  13. Huisman GW, Wonink E, Meima R, Kazemier B, Terpstra P, Witholt B (1991) Metabolism of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans: identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198Google Scholar
  14. Itoh Y, Soldati L, Stalon V, Falmagne P, Terawaki Y, Leisinger T, Haas D (1988) Anabolic carbamoyltransferase of Pseudomonas aeruginos: nucleotide sequence and transcriptional control of the argF structural gene. J Bacteriol 170:2725–2734Google Scholar
  15. Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas olveovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932Google Scholar
  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  17. Lynen F, Wieland H (1955) β-Ketothiolase. Methods Enzymol 1:556–573Google Scholar
  18. Nishimura T, Saito T, Tomita K (1978) Purification and properties of β-ketothiolase from Zoogloea ramigera. Arch Microbiol 116:21–27Google Scholar
  19. Palleroni NJ (1984) Pseudomonadaceae, Genus I. Pseudomonas. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 141–199Google Scholar
  20. Peoples OP, Sinskey AJ (1989a) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polmerase gene (phbC). J Biol Chem 264:15298–15303Google Scholar
  21. Peoples OP, Sinskey AJ (1989b) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297Google Scholar
  22. Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1992) Effect of nitrogen limitation on long-side-chain poly-β-hydroxyalkanoate synthesis by Pseudomonas resinovorans. Appl Environ Microbiol 58:744–746Google Scholar
  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.Google Scholar
  24. Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus A-H, Pühler A (1990) High frequency conjugal plasmid transfer from Gram-negative Escherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172:1662–1666Google Scholar
  25. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222PubMedGoogle Scholar
  26. Schubert P (1990) Molekulare Organisation des PHB-Operons und Charakterisierung des PHB-Synthasegens in Alcaligenes eutrophus. Ph. D. thesis, Georg-August-Universität GottingenGoogle Scholar
  27. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847Google Scholar
  28. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791Google Scholar
  29. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Macmillan, New York, pp 123–213Google Scholar
  30. Steinbüchel A, Schubert P (1989) Expression of the Alcaligenes eutrophus poly(β-hydroxybutyric acid)-synthetic pathway in Pseudomonas spp. Arch Microbiol 153:101–104Google Scholar
  31. Steinbüchel A, Weise S (1992) A Pseudomonas strain accumulating polyesters of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids. Appl Microbiol Biotechnol 37:691–697Google Scholar
  32. Steinbüchel A, Hustede E, Liebergesell M, Pieper U, Timm A, Valentin H (1992a) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol Rev 103:217–230Google Scholar
  33. Steinbüchel A, Krüger N, Valentin H, Timm A, Pries A, Hustede E, Schlegel HB (1992b) Physiological and genetical analysis of polyhydroxyalkanoate biosynthetic pathways. In: Galli E, Silver S, Witholt B (eds) Pseudomonas: molecular biology and biotechnology. American Society for Microbiology, Washington, D.C., pp 315–327Google Scholar
  34. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonas. Appl Environ Microbiol 56:3360–3367Google Scholar
  35. Timm A, Steinbüchel A (1992) Cloning and molecular characterization of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem 209:15–30Google Scholar
  36. Timm A, Byrom D, Steinbüchel A (1990) Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. Appl Microbiol Biotechnol 33:296–301Google Scholar
  37. Vieira J, Messing J (1982) The pUC plasmids, an M13 mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Arnulf Timm
    • 1
  • Stefan Wiese
    • 1
  • Alexander Steinbüchel
    • 1
  1. 1.Institut für Mikrobiologie der Georg-August-Universität GöttingenGöttingenGermany

Personalised recommendations