Designs, Codes and Cryptography

, Volume 8, Issue 3, pp 293–307 | Cite as

McEliece public key cryptosystems using algebraic-geometric codes

  • Heeralal Janwa
  • Oscar Moreno


McEliece proposed a public-key cryptosystem based on algebraic codes, in particular binary classical Goppa codes. Actually, his scheme needs only a class of codes with a good decoding algorithm and with a huge number of inequivalent members with given parameters. In the present paper we look at various aspects of McEliece's scheme using the new and much larger class of q-ary algebraic-geometric Goppa codes.


Data Structure Information Theory Large Class Huge Number Discrete Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Adams and H. Meijer, Security-related comments regarding McEliece public-key cryptosystems: Advances in Cryptology-CRYPTO '87, Springer-Verlag, New York (1987) pp. 224–228.Google Scholar
  2. 2.
    E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems, IEEE Trans. Inform. Th., Vol. IT-24 (1981) pp. 384–386.Google Scholar
  3. 3.
    Th. Beth, M. Frisch and G. J. Simmons (Eds.), Public-Key Cryptography: State of the Art and Future Directions, Lecture Notes in Computer Science, Springer-Verlag, 578 (1992).Google Scholar
  4. 4.
    D. E. Denning, Cryptography and Data Security, Addison-Wesley, Reading, MA (1982).Google Scholar
  5. 5.
    I. I. Dumer, V. A. Zinoviev and V. V. Zyablov, Concatenated decoding according to minimal generalized distance, Problems of Control and Information Theory, Vol. 10, No. 1 (1981) pp. 3–19.Google Scholar
  6. 6.
    I. M. Duursma, Algebraic decoding using special divisors, IEEE Transaction on Information Theory, Vol. 39, No. 2, pp. 694–698.Google Scholar
  7. 7.
    I. M. Duursma, Majority coset decoding, IEEE Transaction on Information Theory, Vol. 39, No. 3 (May 1993) pp. 1067–1070.Google Scholar
  8. 8.
    Dirk Ehrhard, Achieving the designed error capacity in decoding algebraic-geometric codes, IEEE Transaction on Information Theory, Vol. 39, No. 3 (May 1993) pp. 743–751.Google Scholar
  9. 9.
    G. L. Feng and T. R. Rao, Decoding algebraic-geometric codes up to designed minimum distance, IEEE Trans. on Inform. Theory, Vol. 39 (1993) pp. 37–45.Google Scholar
  10. 10.
    G. L. Feng, V. K. Wei, T. R. Rao and K. K. Tzeng, Simplified understanding and efficient decoding of a class of algebraic-geometric codes, IEEE Trans. on Inform. Theory, Vol. 40, No. 4 (1994) pp. 981.Google Scholar
  11. 11.
    G. D. Forney, Concatenated Codes, MIT Press, Cambridge, MA (1966).Google Scholar
  12. 12.
    J. K. Gibbon, Equivalent Goppa codes and trapdoors to McEliece's public-key cryptosystem: EUROCRYPT '91, Lect. Notes in CS, 547 (1991) pp. 68–70.Google Scholar
  13. 13.
    H. L. Janwa, l-MDS codes, threshold schemes and algebraic-geometric codes, submitted to IEEE Transactions on Information Theory.Google Scholar
  14. 14.
    J. Justesen, K. L. Larsen, H. E. Jensen, A. Havemose, T. Høholdt, Construction and decoding of a class of algebraic-geometric codes, IEEE Trans. Inform. Th., Vol. IT-35 (1989) pp. 811–821.Google Scholar
  15. 15.
    J. Justesen, K. L. Larsen, H. E. Jensen, and T. Høholdt, Fast decoding of codes from algebraic-plane curves, IEEE Trans. Inform. Th, Vol. IT-38 (Jan 1992) pp. 111–119.Google Scholar
  16. 16.
    V. I. Korzhik and A. I. Turkin, Cryptanalysis of McEliece's public-key, cryptosystem: EUROCRYPT '91, Lect. Notes in CS, 547 (1991) pp. 68–70.Google Scholar
  17. 17.
    D. Le Brigand and J. J. Risler, Algorithms de Brill-Noether et codes de Goppa, Bull. Soc. Math. France, Vol. 116 (1988) pp. 231–253.Google Scholar
  18. 18.
    P. J. Lee and E. F. Brickell, An observation on the security of McEliece's public-key cryptosystem: Advances in Cryptology-EUROCRYPT '88, Springer LNCS, 330 (1988) pp. 275–280.Google Scholar
  19. 19.
    R. J. McEliece, A Public-key cryptosystem based on algebraic coding theory, DSN Progress Report, Jet Propulsion Laboratory, Pasadena, CA (Jan./Feb. 1978) pp. 114–116.Google Scholar
  20. 20.
    C. Moreno, Algebraic curves over finite fields, Cambridge Tracts in Mathematics, Cambridge University Press, No. 97 (1991).Google Scholar
  21. 21.
    H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory, Problems of Control and Information Theory, Vol. 15, No. 2 (1986) pp. 159–166.Google Scholar
  22. 22.
    C. S. Park, Improving code rate of McEliece's public-key cryptosystem, Electronics Letters, Vol. 25, No. 21 (1989) pp. 1466–1467.Google Scholar
  23. 23.
    N. Patterson, The algebraic decoding of Goppa codes, IEEE Trans. on Information Theory 21, (1975) pp. 203–207.Google Scholar
  24. 24.
    R. Pellikaan, On a decoding algorithm for codes on maximal curves, IEEE Trans. Inform. Th., Vol. IT-35, (1989) pp. 1228–1232.Google Scholar
  25. 25.
    D. Polemi, C. Moreno and O. Moreno, A construction of a.g. Goppa codes from singular curves, preprint.Google Scholar
  26. 26.
    D. Polemi, M. Hasner, O. Moreno and C. Williamson, A Computer algebra algorithm for the adjoint divisor: Proc. of IEEE IT Symposium, San Antonio, Texas (1993) p. 358.Google Scholar
  27. 27.
    S. C. Porter, B-Z. Shen and R. Pellikaan, Decoding geometric Goppa codes using an extra place, IEEE Trans. Inform. Th., Vol. 38 (Nov. 1992) pp. 1963–1976.Google Scholar
  28. 28.
    T. R. N. Rao and Kil-H. Nam, Private-key algebraic-code encryption, IEEE Trans. Inform. Th., Vol. IT-35 (1989).Google Scholar
  29. 29.
    S. Sakata, J. Justesen, Y. Madelung, H. E. Jensen and T. Høholdt, A fast decoding method of AG codes from Miura-Kamiya curves C ab up to half the Reng-Rao bound. Finite Fields and Their Applications, Vol. 1, No. 1 (January, 1995) pp. 83–101.Google Scholar
  30. 30.
    Jean-Pierre Serre, Nombres de points des courbes Algébriques sur F q, Séminaire de Théorie des Nombres de Bordeaux, exposé 22 (1983) pp. 1–8.Google Scholar
  31. 31.
    Jean-Pierre Serre, Rational points on curves over finite fields, “q Large”, Parts I and II, Lectures given at Harvard University, (September–December, 1985). Notes by Fernando Gouvea, Serre (1985).Google Scholar
  32. 32.
    Gustavus J. Simmons (ed.), Contemporary Cryptology: The Science of Information Integrity, IEEE Press, New Jersey (1992).Google Scholar
  33. 33.
    A. N. Skorobogatov and S. G. 307–02, On the decoding of algebraic-geometric codes, IEEE Trans. Inform. Theory, Vol. 36, No. 5 (1990) pp. 1051–1060.Google Scholar
  34. 34.
    Y. Sugiyama et al., Further results on Goppa codes and their applications to constructing efficient binary codes, IEEE Trans. Inform. Theory, Vol. 22 (1976) pp. 518–526.Google Scholar
  35. 35.
    J. van Tilburg, On the McEliece public-key cryptosystem: CRYPTO '88, Lecture Notes in CS, 403 (1988).Google Scholar
  36. 36.
    M. A. Tsfasman and S. G. Vlădut, Algebraic-geometric codes, Kluwer Akad. Publ. (1991).Google Scholar
  37. 37.
    S. G. Vlàdut, On the decoding of algebraic-geometric codes over F q for q ≥ 16, IEEE Trans. Inform. Th., Vol. IT-36 (1990) pp. 1461–1463.Google Scholar
  38. 38.
    J. Wolfmann, The number of rational points on certain algebraic curves over finite fields, Communications in Algebra, Vol. 17, No. 8 (1989) pp. 2055–2060.Google Scholar
  39. 39.
    M. Wirtz, On the parameters of Goppa codes, IEEE Trans. Inform. Th., Vol. 34, No. 5 (Sept. 1988) pp. 1341–1343.Google Scholar
  40. 40.
    V. A. Zinoviev, Generalized concatenated codes for channels with bursts of errors and independent errors, Problems of Inform. Trans., Vol. 17, No. 4 (1981) pp. 53–62.Google Scholar
  41. 41.
    G. A. Kabatianskii, On security of McEliee and Niederreiter type cryptosystems, Lecture delivered at the University of Puerto Rico, (September 1993).Google Scholar
  42. 42.
    E. Krouk, A new public key cryptosystem: Proceedings of the Sixth Swedish-Russian International Workshop on Information Theory, (1993) pp. 285–286.Google Scholar
  43. 43.
    V. M. Sidelnikov and S. O. Shestakov, On insecurity of cryptosystems based on generalized Reed-Solomon codes, Diskretnaya Matematika, Vol. 4, No. 3 (1992). Translated in, Discrete Math. Appl., Vol. 2, No. 4 (1992) pp. 439–444.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Heeralal Janwa
    • 1
  • Oscar Moreno
    • 2
  1. 1.The Mehta Research Institute of Mathematics and Mathematical PhysicsAllahabadIndia
  2. 2.Department of MathematicsUniversity of Puerto RicoRio PiedrasPuerto Rico

Personalised recommendations