Advertisement

Journal of Mathematical Biology

, Volume 30, Issue 7, pp 755–763 | Cite as

Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations

  • Horst R. Thieme
Research Announcement

Abstract

Conditions are presented under which the solutions of asymptotically autonomous differential equations have the same asymptotic behavior as the solutions of the associated limit equations. An example displays that this does not hold in general.

Key words

Dynamical systems Asymptotic behavior Butler-McGehee lemma Chemostat Epidemics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blythe, S. P., Cooke, K. L., Castillo-Chavez, C.: Autonomous risk-behavior change, and non-linear incidence rate, in models of sexually transmitted diseases. Biometrics Unit Technical Report B-1048-M; Cornell University, Ithaca, NY (Preprint)Google Scholar
  2. Busenberg, S., Iannelli, M.: Separable models in age-dependent population dynamics. J. Math. Biol. 22, 145–173 (1985)Google Scholar
  3. Butler, G., Waltman, P.: Persistence in dynamical systems. J. Differ. Equations. 63, 255–263 (1986)Google Scholar
  4. Conway, E., Hoff, D., Smoller, J.: Large time behavior of solutions of systems of nonlinear reaction-diffusion equations. SIAM J. Appl. Math. 35, 1–16 (1978)Google Scholar
  5. Cushing, J. M.: A competition model for size-structured species. SIAM J. Appl. Math. 49, 838–858 (1989)Google Scholar
  6. Dafermos, C. M.: An invariance principle for compact processes. J. Differ. Equations 9, 239–252 (1971)Google Scholar
  7. Fiedler, B., Mallet-Paret,J.: APoincaré-Bendixson theorem for scalar reaction diffusion equations. Arch. Ration. Mech. Anal. 107, 325–345 (1989)Google Scholar
  8. Grimmer, R. C.: Asymptotically almost periodic solutions of differential equations. SIAM J. Appl. Math. 17, 109–115 (1968)Google Scholar
  9. Hahn, W.: Stability of Motion. Berlin Heidelberg New York: Springer 1967Google Scholar
  10. Hale, J. L.: Ordinary Differential Equations, 2nd ed. Huntington, NY: Krieger 1980Google Scholar
  11. Hale, J. K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20, 388–395 (1989)Google Scholar
  12. Hirsch, M. W.: Systems of differential equations that are competitive or cooperative. IV: Structural stability in 3-dimensional systems. SIAM J. Math. Anal. 21, 1225–1234 (1990)Google Scholar
  13. Hsiao, L., Su, Y., Xin, Z. P.: On the asymptotic behavior of solutions of a reacting-diffusing system: a two predator-one prey model. SIAM J. Appl. Math. 18, 647–669 (1987)Google Scholar
  14. Hsu, S.-B.: Predator-mediated coexistence and extinction. Math. Biosci. 54, 231–248 (1981)Google Scholar
  15. Hsu, S.-B., Cheng, K.-S., Hubbell, S. P.: Exploitative competition of microorganisms for two complementary nutrients in continuous cultures. SIAM J. Appl. Math. 41, 422–444 (1981)Google Scholar
  16. Jäger, W., So, J. W.-H., Tang, B., Waltman, P.: Competition in the gradostat. J. Math. Biol. 25, 23–42 (1987)Google Scholar
  17. Mallet-Paret, J., Smith, H. L.: The Poincaré-Bendixson theorem for monotone cyclic feedback systems. J. Dyn. Differ. Equations 2, 367–421 (1990)Google Scholar
  18. Markus, L.: Asymptotically autonomous differential systems. In: Lefschetz, S. (ed.). Contributions to the Theory of Nonlinear Oscillations III. (Ann. Math. Stud., Vol. 36, pp. 17–29) Princeton: Princeton University Press 1956Google Scholar
  19. Miller, R. K.: Almost periodic differential equations as dynamical systems with applications to the existence of a.p. solutions. J. Differ. Equations 1, 337–345 (1965)Google Scholar
  20. Miller, R. K., Sell, G. R.: Volterra Integral Equations and Topological Dynamics. Mem. Am. Math. Soc. 102 (1970)Google Scholar
  21. Sell, G. R.: Nonautonomous differential equations and topological dynamics. I. The basic theory. II. Limiting equations. Trans. Am. Math. Soc. 127, 241–262, 263–283 (1967)Google Scholar
  22. Sell, G. R.: Topological dynamical techniques for differential and integral equations. In: Weiss, L. (ed.) Ordinary Differential Equations, pp. 287–304. Proceedings of the NRL-NCR conference 1971, New York: Academic Press 1972Google Scholar
  23. Smith, H. L.: Convergent and oscillatory activation dynamics for cascades of neural nets with nearest neighbor competitive or cooperative interactions. Neural Networks 4, 41–46 (1991)Google Scholar
  24. Smith, H. L., Tang, B.: Competition in the gradostat: the role of the communication rate. J. Math. Biol. 27, 139–165 (1989)Google Scholar
  25. Smith, H. L., Tang, B., Waltman, P.: Competition in an n-vessel gradostat. SIAM J. Appl. Math. 51, 1451–1471 (1991)Google Scholar
  26. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Berlin Heidelberg New York: Springer 1983Google Scholar
  27. Thieme, H. R.: Persistence under relaxed point-dissipativity (with applications to an endemic model). (Preprint a)Google Scholar
  28. Thieme, H. R.: Asymptotically autonomous differential equations in the plane (Preprint b)Google Scholar
  29. Utz, W. R., Waltman, P.: Asymptotic almost periodicity of solutions of a system of differential equations. Proc. Am. Math. Soc. 18, 597–601 (1967)Google Scholar
  30. Waltman, P.: Coexistence in chemostat-like models. Rocky Mt. J. Math. 20, 777–807 (1990)Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Horst R. Thieme
    • 1
  1. 1.Department of MathematicsArizona State UniversityTempeUSA

Personalised recommendations