Journal of Mathematical Biology

, Volume 30, Issue 7, pp 693–716 | Cite as

Dynamic models of infectious diseases as regulators of population sizes

  • Jaime Mena-Lorcat
  • Herbert W. Hethcote
Article

Abstract

Five SIRS epidemiological models for populations of varying size are considered. The incidences of infection are given by mass action terms involving the number of infectives and either the number of susceptibles or the fraction of the population which is susceptible. When the population dynamics are immigration and deaths, thresholds are found which determine whether the disease dies out or approaches an endemic equilibrium. When the population dynamics are unbalanced births and deaths proportional to the population size, thresholds are found which determine whether the disease dies out or remains endemic and whether the population declines to zero, remains finite or grows exponentially. In these models the persistence of the disease and disease-related deaths can reduce the asymptotic population size or change the asymptotic behavior from exponential growth to exponential decay or approach to an equilibrium population size.

Key words

Epidemiological models Population dynamics Thresholds Hopf bifurcation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. M.: Transmission dynamics and control of infectious disease agents. In: Anderson, R. M., May, R. M. (eds.) Population Biology of Infectious Diseases, pp. 149–176. New York Heidelberg Berlin: Springer 1982aGoogle Scholar
  2. Anderson, R. M.: Directly transmitted viral and bacterial infections of man. In: Anderson, R. M. (ed.) Population Dynamics of Infectious Diseases, pp. 1–37. London New York: Chapman and Hall 1982bGoogle Scholar
  3. Anderson, R. M., Jackson, H. C., May, R. M., Smith, A. D. M.: Population dynamics of fox rabies in Europe. Nature 289, 765–777 (1981)Google Scholar
  4. Anderson, R. M., May, R. M.: Population biology of infectious diseases I. Nature 180, 361–367 (1979)Google Scholar
  5. Anderson, R. M., May, R. M.: The population dynamics of microparasites and their invertebrates host. Philos. Trans. R. Soc. Lond. B291, 451–524 (1981)Google Scholar
  6. Anderson, R. M., May R. M., McLean, A. R.: Possible demographic consequences of AIDS in developing countries. Nature 332, 228–234 (1988)Google Scholar
  7. Brauer, F., Nohel, J. A.: Qualitative theory of ordinary differential equations. New York: Benjamin 1969Google Scholar
  8. Brauer, F.: Models for the spread of universally fatal diseases. J. Math. Biol. 28, 451–462 (1990)Google Scholar
  9. Bremermann, H. J., Thieme, H. R.: A competitive exclusion principle for pathogen virulence. J. Math. Biol. 27, 179–190 (1989)Google Scholar
  10. Busenberg, S. N., van den Driessche, P.: Analysis of a disease transmission model in a population with varying size. J. Math. Biol. 28, 257–270 (1990)Google Scholar
  11. Busenberg, S. N., Hadeler, K. P.: Demography and epidemics. Math. Biosci. 101, 41–62 (1990)Google Scholar
  12. Castillo-Chavez, C. C., Cooke, K. L., Huang, L., Levin, S. A.: On the role of long periods of infectiousness in the dynamics of AIDS, Part 1, Single population models. J. Math. Biol. 27, 373–398 (1989)Google Scholar
  13. Coddington, E. A., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955Google Scholar
  14. Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969Google Scholar
  15. Hassard, B. D., Kazarinoff, N. D., Wan, Y-H.: Theory and applications of Hopf Bifurcation. (Lond. Math. Soc. Lect. Note Ser.) Cambridge London: Cambridge University Press 1981Google Scholar
  16. Hethcote, H. W.: Qualitative analysis for communicable disease models. Math. Biosci. 28, 335–356 (1976)Google Scholar
  17. Hethcote, H. W.: Three basic epidemiological models. In: Gross, L., Hallam, T. G., Levin, S. A. (eds.) Applied Mathematical Ecology, pp. 119–144. Berlin Heidelberg New York: Springer 1989Google Scholar
  18. Hethcote, H. W., Levin, S. A.: Periodicity in epidemiological models. In: Gross, L., Hallam, T. G., Levin, S. A. (eds.) Applied Mathematical Ecology, pp. 193–211. Berlin Heidelberg New York: Springer 1989Google Scholar
  19. Hethcote, H. W., Stech, H. W., van den Driessche, P.: Periodicity and stability in epidemic models: a survey. In: Busenberg, S. N., Cooke, K. L. (eds.) Differential Equations and Applications in Ecology, Epidemic and Populations Problems, pp. 65–82. New York: Academic Press 1981Google Scholar
  20. Hethcote, H. W., van den Driessche, P.: Some epidemiological models with nonlinear incidence. J. Math. Biol. 29, 271–287 (1991)Google Scholar
  21. Hyman, J. M., Stanley, E. A.: Using mathematical models to understand the AIDS epidemic. Math. Biosci. 90, 415–473 (1988)Google Scholar
  22. Jacquez, J. A., Simon, C. P., Koopman, J., Sattenspiel, L., Perry, T.: Modeling and analyzing HIV transmission: The effect of contact patterns. Math. Biosci. 92, 119–199 (1988)Google Scholar
  23. Liu, W. M., Hethcote, H. W., Levin, S. A.: Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25, 359–380 (1987)Google Scholar
  24. Liu, W. M., Levin, S. A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)Google Scholar
  25. May, R. M., Anderson, R. M.: Regulation and stability of host-parasite population interactions. II. Destabilizing processes. J. Anim. Ecol. 47, 219–267 (1978)Google Scholar
  26. May, R. M., Anderson, R. M.: Population biology of infectious diseases II. Nature 280, 455–461 (1979)Google Scholar
  27. McNeill, W. H.: Plagues and People. Oxford: Blackwell 1976Google Scholar
  28. Mena-Lorca, J.: Periodicity and stability in epidemiological models with disease-related deaths. Ph.D. Thesis: University of Iowa 1988Google Scholar
  29. Pugliese, A.: Population models for diseases with no recovery. J. Math. Biol. 28, 65–82 (1990)Google Scholar
  30. Schenzle, D., Dietz, K.: Critical population sizes for endemic virus transmission. In: Fricke, W., Hinz, E. (eds.) Raümliche persistenz und diffusion von krankheiten. (Heidelb. Geogr. Arbeiten, vol. 83) Heidelberg: 1986Google Scholar
  31. Thieme, H. R., Castillo-Chavez, C.: On the role of variable infectivity in the dynamics of the human immunodeficiency virus. In: Castillo-Chavez, C. (ed.) Mathematical and statistical approaches to AIDS epidemiology. (Lect. Notes Biomath., vol. 83, pp. 157–176) Berlin Heidelberg New York: Springer 1989Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Jaime Mena-Lorcat
    • 1
  • Herbert W. Hethcote
    • 2
  1. 1.Instituto de MatemáticasUniversidad Católica de ValparaísoValparaísoChile
  2. 2.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations