Quality and Quantity

, Volume 21, Issue 4, pp 393–408 | Cite as

Using Mokken scale analysis to develop unidimensional scales

Do the six abortion items in the NORC GSS form one or two scales?
  • Michael Gillespie
  • Elisabeth M. Tenvergert
  • Johannes Kingma


This paper describes Mokken scale analysis as a method for assessing the unidimensionality of a set of items. As a nonparametric stochastic version of Guttman scale analysis, the Mokken model provides a useful starting point in scale construction since it does not impose severe restrictions on the functional form of the item trace lines. It requires only that the item trace lines are monotonically increasing and that they do not cross. After describing the Mokken method, we illustrate it by analyzing six abortion items from the 1975–1984 NORC General Social Surveys. In contrast to earlier parametric analyses of these items (regular and probit factor analyses), we find that these items form a single dimension. We argue that the two-dimension solution of these earlier analyses is an artifact of the differences in the difficulty of the items.


Functional Form Parametric Analysis Severe Restriction Single Dimension Scale Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohrnstedt, G.W. (1982). “Measurement”, pp. 69–121 in P.H. Rossi, J.D. Wright & A.B. Anderson, eds, Handbook of Survey Research. New York: Academic Press.Google Scholar
  2. Christoffersson, A. (1975). “Factor analysis of dichotomized variables”, Psychometrika 40: 5–32.Google Scholar
  3. Clogg, C.C. (1979). “Some latent structure models for the analysis of Likert-type data”. Social Science Research 8: 287–301.Google Scholar
  4. Clogg, C.C. and Sawyer, D.O. (1981). “A comparison of alternative models for analyzing the scalability of response patterns”, pp. 240–280 in S. Leinhardt, ed., Sociological Methodology. London: Jossey-Bass Publishers.Google Scholar
  5. Davis, J.A. and Smith, T.W. (1984). General Social Surveys, 1972–1984: Cumulative code book. Chicago: National Opinion Research Center.Google Scholar
  6. Duncan, O.D., Sloane, D.B. and Brody, C. (1982). “Latent classes inferred from response-consistency effects”, pp. 19–64 in K.G. Joreskog and H. Wold, eds., Contribution to economic analysis. Amsterdam: North-Holland Publishing Co.Google Scholar
  7. Goodman, L.A. (1975). A new model for scaling response patterns: An application of the quasi-independence concept”, Journal of the American Statistical Association 70: 755–768.Google Scholar
  8. Goodman, L.A. (1978). Analyzing qualitative/categorical data: Log-linear models and latent structure analysis, Cambridge, Massachusetts: Abt Books.Google Scholar
  9. Goodman, L.A. (1979). “The analysis of qualitative variables using more parsimonious quasi-independence models, scaling models, and the latent structures”, pp. 119–137 in R.K. Merton, J.S. Coleman and P.H. Rossi, eds., Qualitative and Quantitative Social Research: Papers in honor of Paul F. Lazarsfeld. New York: Free Press.Google Scholar
  10. Goodman, L.A. (1984). The analysis of cross-classified data having ordered categories. Cambridge, Massachusetts: Harvard University Press.Google Scholar
  11. Guttman, L. (1950). “The basis for scalogram analysis”, pp. 60–90 in S. Stouffer, ed., Measurement and Prediction, Princeton, N.J.: Princeton University.Google Scholar
  12. Hattie, J. (1985). “Methodology review: Assessing unidimensionality of tests and items”. Applied Psychological Measurement 9: 139–164.Google Scholar
  13. Hauser, R.M., Tsai, S.L. and Sewell, W.H. (1983). “A model of stratification with response error in social and psychological variables”, Sociology of Education 56: 20–46.Google Scholar
  14. Jöreskog, K.G. (1982), “The lisrel approach to causal model-building in the social sciences”, pp. 81–99 in K.G. Jöreskog and H. Wold, eds, Systems Under Indirect Observation. Amsterdam: North-Holland.Google Scholar
  15. Kingma, J. and Reuvekamp, J. (1984). “The construction of a development scale for seriation”, Education and Psychological Measurement 44: 1–23.Google Scholar
  16. Kingma, J. and Reuvekamp, J. (1986a). Mokken model: A Pascal program for nonparametric scaling. Educational and Psychological Measurement 46: 667–677.Google Scholar
  17. Kingma, J. and Reuvekamp, J. (1986b). Mokken test for the robustness of nonparametric stochastic Mokken scales. Educational and Psychological Measurement 46: 679–685.Google Scholar
  18. Lippert, E., Schneider, P. and Wakenhut, R. (1978). “Die Verwendung der Skalierungsverfahren von Mokken and Rasch zur Uberprufung and Revision von Einstellungsskallen”, Diagnostica 24: 252–274.Google Scholar
  19. Loevinger, J. (1947). “A systematic approach to construction and evaluation of tests of ability”, Psychological Monograph 61, (No. 4, Whole no. 285).Google Scholar
  20. Loevinger, J. (1948). “The technique of homogeneous tests”, Psychological Bulletin 45: 507–529.Google Scholar
  21. Lord, F.M. (1980). Applications of Items Response Theory to Practical Testing Problems. Hillsdale, N.J.: Erlbaum.Google Scholar
  22. McDonald, R.P. (1982). “Linear versus nonlinear models in item response theory”, Applied Psychological Measurement 6: 379–396.Google Scholar
  23. Mokken, R.J. (1969a). “Dutch-American comparisons of the ‘sense of political efficacy’”, Quality and Quantity 3: 125–152.Google Scholar
  24. Mokken, R.J. (1969b). “Dutch-American comparisons of the ‘sense of political efficacy:’ Some remarks on cross-cultural robustness of scales”, Acta Politica 4: 425–448.Google Scholar
  25. Mokken, R.J. (1971). A Theory and Procedure of Scale Analysis. The Hague: Mouton.Google Scholar
  26. Mokken, R.J. and Lewis, C. (1982). “A nonparametric approach to the analysis of dichotomous item responses”, Applied Psychological Measurement 6: 417–430.Google Scholar
  27. Molenaar, I.V. (1982). “Een tweede weging van de Mokkenschaal” (Another weighing of the Mokken scaling procedure), Tydschrift voor Onderwijsresearch 7: 172–181.Google Scholar
  28. Mooijaart, A. (1982). “Latent structure analysis for categorical variables”, pp. 77–95 in K.G. Jöreskog and H. Wold, eds., Systems Under Indirect Observation. Amsterdam: North-Holland.Google Scholar
  29. Muthen, B. (1978). “Contributions to factor analysis of dichotomous variables”, Psychometrika 43: 551–560.Google Scholar
  30. Muthen, B. (1979). “A structural probit model with latent variables”, Journal of the American Statistical Association 74: 807–811.Google Scholar
  31. Muthen, B. (1982). “Some categorical response models with continuous latent variables”, pp. 65–79 in K.G. Jöreskog and H. Wold, eds, Systems Under Indirect Observation. Amsterdam: North-Holland.Google Scholar
  32. Niemöller, B., VanSchuur, W.H. and Stokman, F.N. (1980). Stap User's Manual: Stochastic Cummulative Scaling, Vol. 4. Amsterdam: University of Amsterdam.Google Scholar
  33. Nunally, J.M. (1978). Psychometric Theory, New York: McGraw-Hill Book Co.Google Scholar
  34. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Denmarks paedagogiske Institut.Google Scholar
  35. Stinchcombe, A.L. (1983). “Linearity in log-linear analysis”, pp. 104–125 in S. Leinhardt, ed., Sociological Methodology, 1983–1984. London: Jossey-Bass Publishers.Google Scholar
  36. Stokman, F.N. (1977). Roll calls and sponsorships, a methodological analysis of the third world group formation in the United Nations. Leiden: Sijthof.Google Scholar
  37. Stokman, F. and Van Schuur, W. (1980). “Basic scaling”, Quality and Quantity 14: 5–30.Google Scholar
  38. Ten Berge, J. (1972). “Difficulty factors, distribution effects, and the least squares data matrix solution”, Educational and Psychological Measurement 32: 911–920.Google Scholar
  39. Wright, B.D. and Stone, M.H. (1979). Best Test Design. Chicago: MESA press.Google Scholar

Copyright information

© Martinus Nijhoff Publishers 1987

Authors and Affiliations

  • Michael Gillespie
    • 1
  • Elisabeth M. Tenvergert
    • 1
  • Johannes Kingma
    • 1
  1. 1.Department of SociologyUniversity of AlbertaEdmontonCanada

Personalised recommendations