Behavioral Ecology and Sociobiology

, Volume 28, Issue 1, pp 9–12 | Cite as

Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE- and SW-migrating blackcaps (Sylvia atricapilla)

  • Andreas J. Helbig


Young avian migrants of many species are able to find their species- or population-specific wintering area without the help of conspecifics. In orientation tests hand-raised birds have been demonstrated to choose appropriate population-specific migratory directions, suggesting a genetic basis to this behaviour. I here report results of a cross-breeding experiment between individuals of two blackcap (Sylvia atricapilla) populations with widely different migratory directions. The orientation of the F1 offspring was intermediate between and significantly different from that of both parental populations (Fig. 2). The variance of individual mean directions in the F1 generation did not increase compared with the parental groups, and the inheritance of migratory directions was not sex-linked. The data provide direct evidence for a genetic basis of migratory directions in birds and demonstrate a phenotypically intermediate mode of inheritance.


Direct Evidence Genetic Basis Bird Species Parental Group Parental Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  2. Beck W, Wiltschko W (1982) The magnetic field as a reference system for genetically encoded migratory direction in pied flycatchers (Ficedula hypoleuca PALLAS). Z Tierpsychol 60: 41–46Google Scholar
  3. Beck W, Wiltschko W (1988) Magnetic factors control the migratory direction of pied flycatchers (Ficedula hypoleuca PALLAS). Proc XIX Int Ornithol Congr, Ottawa 1986: 1955–1962Google Scholar
  4. Berthold P (1973) Relationships between migratory restlessness and migration distance in six Sylvia species. Ibis 115: 594–599Google Scholar
  5. Berthold P (1988) Evolutionary aspects of migratory behavior in European warblers. J Evol Biol 1: 195–209Google Scholar
  6. Berthold P, Querner U (1981) Genetic basis of migratory behavior in European warblers. Science 212: 77–79Google Scholar
  7. Berthold P, Querner U (1982) Genetic basis of moult, wing length, and body weight in a migratory bird species, Sylvia atricapilla. Experientia 38: 801–802Google Scholar
  8. Berthold P, Terrill SB (1988) Migratory behaviour and population growth of blackcaps wintering in Britain and Ireland: some hypotheses. Ring Migr 9: 153–159Google Scholar
  9. Berthold P, Mohr G, Querner U (1990a) Steuerung und potentielle Evolutionsgeschwindigkeit des obligaten Teilzieherverhaltens: Ergebnisse eines Zweiweg-Selektionsexperiments mit der Mönchsgrasmücke (Sylvia atricapilla). J Ornithol 131: 33–45Google Scholar
  10. Berthold P, Wiltschko W, Miltenberger H, Querner U (1990b) Genetical transmission of migratory behavior into a nonmigratory bird population. Experientia 46: 107–108Google Scholar
  11. Brannon EL (1972) Mechanisms controlling migration of sockeye salmon fry. Pacific Salmon Fish Comm Bull 21: 1–86Google Scholar
  12. Brannon EL (1984) Influence of stock origin on salmon migratory behavior. In: McCleave JD, Arnold GP, Dodson JJ, Neill WH (eds) Mechanisms of migration in fishes. NATO Conf Ser IV, Marine Sci 14: 103–111. Plenum Press, New YorkGoogle Scholar
  13. Emlen ST (1969) The development of migratory orientation in young indigo buntings. Living Bird 8: 113–126Google Scholar
  14. Emlen ST, Emlen JT (1966) A technique for recording migratory orientation of captive birds. Auk 83: 361–367Google Scholar
  15. Groot C (1965) On the orientation of young salmon (Oncorhynchus nerka) during their seaward migration out of lakes. Behaviour Suppl 14: 1–198Google Scholar
  16. Gwinner E (1968) Artspezifische Muster der Zugunruhe bei Laubsängern und ihre mögliche Bedeutung für die Beendigung des Zuges im Winterquartier. Z Tierpsychol 25: 843–853Google Scholar
  17. Gwinner E, Wiltschko W (1978) Endogenously controlled changes in migratory direction of the garden warbler, Sylvia borin. J Comp Physiol 125: 267–273Google Scholar
  18. Helbig AJ, Berthold P, Wiltschko W (1989) Migratory orientation of blackcaps (Sylvia atricapilla): population-specific shifts of direction during the autumn. Ethology 82: 307–315Google Scholar
  19. Klein H, Berthold P, Gwinner E (1973) Der Zug europäischer Garten- und Mönchsgrasmücken (Sylvia borin und S. atricapilla). Vogelwarte 27: 73–134Google Scholar
  20. Pardi L, Scapini F (1983) Inheritance of solar direction finding in sandhoppers: mass crossing experiments. J Comp Physiol 151A: 435–440Google Scholar
  21. Perdeck AC (1958) Two types of orientation in migrating starlings, Sturnus vulgaris L., and chaffinches, Fringilla coelebs L., as revealed by displacement experiments. Ardea 46: 1–37Google Scholar
  22. Scapini F (1988) Heredity and learning in animal orientation. Monitore Zool Ital (NS) 22: 203–234Google Scholar
  23. Schüz E (1964) Zur Deutung der Zugscheiden des Weißstorchs. Vogelwarte 22: 194–223Google Scholar
  24. Schüz E (1971) Grundriß der Vogelzugskunde. Parey, Berlin HamburgGoogle Scholar
  25. Wiltschko W (1983) Compasses used by birds. Comp Biochem Physiol 76A: 709–717Google Scholar
  26. Wiltschko W, Gwinner E (1974) Evidence for an innate magnetic compass in garden warblers. Naturwissenschaft 61: 406Google Scholar
  27. Wiltschko W, Wiltschko R (1988a) Magnetic orientation in birds. Current Ornithol 5: 67–120Google Scholar
  28. Wiltschko W, Wiltschko R (1988b) Magnetic versus celstial orientation in migrating birds. Trends Ecol Evol 3: 13–15Google Scholar
  29. Zink G (1973) Der Zug europäischer Singvögel. Ein Atlas der Wiederfunde beringter Vögel. 1.Lieferung. Vogelzug, MöggingenGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Andreas J. Helbig
    • 1
  1. 1.Max-Planck-Institut für Verhaltensphysiologie, Vogelwarte RadolfzellMöggingenFederal Republic of Germany

Personalised recommendations