Advertisement

Solar Physics

, Volume 105, Issue 2, pp 413–428 | Cite as

Influence of magnetic clouds on cosmic ray intensity variation

  • Badruddin
  • R. S. Yadav
  • N. R. Yadav
Article

Abstract

The data from a high counting rate neutron monitor has been analysed to study the nature of galactic cosmic-ray transient modulation associated with three classes of magnetic clouds, i.e., clouds associated with shock, stream interface and cold magnetic enhancement.

It is found that the decreases in cosmic-ray intensity which are associated with clouds preceded by a shock, are very high (Forbush-type) and these decreases start earlier than the arrival of the cloud at the Earth. From the study of the time profile of these decreases it is found that the onset time of a Forbush-type decrease produced by a shock-associated cloud starts nearly at the time of arrival of the shock front at the Earth and the recovery is almost complete within a week.

The decreases in cosmic-ray intensity associated with clouds followed by a stream interface are smaller in magnitude and larger in duration. The depression starts on the day of the arrival of the cloud.

The decreases associated with the third category of clouds, i.e., clouds associated with cold magnetic enhancement (a region in which plasma temperature is anomalously low and the magnetic field strength is enhanced) are of still smaller amplitude and duration. The decrease in this case starts on the day the cloud arrives at the Earth.

It seems that the Forbush decrease modulating region consists of a shock front followed by a plasma sheath in which the field intensity is high and turbulent. The amplitude of decrease is related to the field magnitude and the speed of the cloud. Both shocked plasma and the magnetic cloud are influential in determining the time profile of these decreases. In our view it is not the magnetic field strength or the topology alone which is responsible for the cosmic-ray depression. The most likely additional effect is the increased degree of turbulence.

Keywords

Magnetic Field Strength Shock Front Magnetic Cloud Neutron Monitor Field Magnitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ankiewicz, P. J., Stoker, P. H., and Moraal, H.: 1983, Proc. 18th Int. Cosmic Ray Conf. 10, 120.Google Scholar
  2. Barnden, L. R.: 1973, Proc. 13th Int. Cosmic Ray Conf. 2, 1277.Google Scholar
  3. Barouch, E. and Burlaga, L. F.: 1975, J. Geophys. Res. 80, 449.Google Scholar
  4. Barouch, E. and Sari, J. W.: 1976, J. Geophys. Res. 81, 1453.Google Scholar
  5. Borrini, G., Gosling, J. T., Bame, S. J., and Feldman, W. C.: 1982, J. Geophys. Res. 87, 4365.Google Scholar
  6. Burlaga, L. F.: 1983, Proc. 18th Int. Cosmic Ray Conf. 12, 21.Google Scholar
  7. Burlaga, L. F. and Behannon, K. W.: 1982, Solar Phys. 81, 181.Google Scholar
  8. Burlaga, L. F. and King, J. H.: 1979, J. Geophys. Res. 84, 6633.Google Scholar
  9. Burlaga, L. F. and Klein, L. W.: 1980, NASA Techn. Mem. 80668.Google Scholar
  10. Burlaga, L. F., Klein, L. W., Sheeley, Jr., N. R., Michels, D. J., Howard, R. A., Kooman, M. J., Schwenn, R., and Rosenbaur, H.: 1982, Geophys. Res. Letters 9, 1317.Google Scholar
  11. Burlaga, L. F., McDonald, F. B., Ness, N. F., Schwenn, R., Lazarus, A. J., and Mariani, F.: 1984, J. Geophys. Res. 89, 6579.Google Scholar
  12. Burlaga, L. F. and Oglvie, K. W.: 1969, J. Geophys. Res. 74, 2815.Google Scholar
  13. Burlaga, L. F., Sittler, E., Mariani, F., and Schwenn, R.: 1981, J. Geophys. Res. 86, 6673.Google Scholar
  14. Duggal, S. P., Pomerantz, M. A., Schaefer, R. K., and Tsao, C. H.: 1983, J. Geophys. Res. 88, 2973.Google Scholar
  15. Forbush, S. E.: 1938, Phys. Rev. 54, 975.Google Scholar
  16. Fujimoto, K., Kojima, H., and Murakami, K.: 1983, Proc. 18th Int. Cosmic Ray Conf. 3, 267.Google Scholar
  17. Geranios, A.: 1982, Astrophys. Space Sci. 81, 103.Google Scholar
  18. Geranios, A. and Rosenbauer, H.: 1983, Proc. 18th Int. Cosmic Ray Conf. 4, 206.Google Scholar
  19. Gold, T.: 1959, J. Geophys. Res. 64, 1665.Google Scholar
  20. Goldstein, M. L., Burlaga, L. F., and Matthaeus, W. H.: 1984, J. Geophys. Res. 89, 3747.Google Scholar
  21. Hundhausen, A. J., Sawyer, C. B., House, L., Illings, R. M. E., and Wagner, W. J.: 1984, J. Geophys. Res. 89, 2639.Google Scholar
  22. Iucci, N., Parisi, M., Storini, M., and Villoresi, G.: 1979a, Nuovo Cimento 2C, 1.Google Scholar
  23. Iucci, N., Parisi, M., Storini, M., and Villoresi, G.: 1979b, Nuovo Cimento 2C, 421.Google Scholar
  24. Kane, R. P.: 1977, J. Geophys. Res. 82, 561.Google Scholar
  25. Klein, L. W. and Burlaga, L. F.: 1982, J. Geophys. Res. 87, 613.Google Scholar
  26. Laster, H., Lenchek, A. M., and Singer, S. F.: 1962, J. Geophys. Res. 67, 2639.Google Scholar
  27. Lockwood, J. A.: 1971, Space Sci. Rev. 12, 658.Google Scholar
  28. Lockwood, J. A., Hsieh, L. and Quenby, J. J.: 1975, J. Geophys. Res. 80, 1725.Google Scholar
  29. Lockwood, J. A. and Webber, W. R.: 1977, J. Geophys. Res. 82, 1906.Google Scholar
  30. Lockwood, J. A. and Webber, W. R.: 1984, J. Geophys. Res. 89, 17.Google Scholar
  31. McDonald, F. B., Trainor, J. H., and Webber, W. R.: 1981, Proc. 17th Int. Cosmic Ray Conf. 10, 147.Google Scholar
  32. Morfill, G., Richter, A. K., and Scholer, M.: 1979, J. Geophys. Res. 84, 1505.Google Scholar
  33. Morrison, P.: 1954, Phys. Rev. 95, 641.Google Scholar
  34. Morrison, P.: 1956, Phys. Rev. 101, 1354.Google Scholar
  35. Murayama, T., Maezawa, K., and Hakamada, K.: 1979, Proc. 16th Int. Cosmic Ray Conf. 3, 416.Google Scholar
  36. Newkirk, G. Jr., Hundhausen, A. J., and Pizzo, V.: 1981, J. Geophys. Res. 86, 5387.Google Scholar
  37. Nishida, A.: 1982, J. Geophys. Res. 87, 6003.Google Scholar
  38. Palmer, I. D., Allum, F. R., and Singer, S.: 1978, J. Geophys. Res. 83, 75.Google Scholar
  39. Parker, E. N.: 1963, in Interplanetary Dynamical Processes, Interscience, New York.Google Scholar
  40. Piddington, J. H.: 1958, Phys. Rev. 112, 589.Google Scholar
  41. Quenby, J. J.: 1971, Proc. 12th Int. Cosmic Ray Conf. 2, 730.Google Scholar
  42. Sanderson, T. R., Marsden, R. G., Reinhard, R., Wenzel, K. P., and Smith, E. J.: 1983, Geophys. Res. Letters 10, 916.Google Scholar
  43. Stoker, P. H. and Carmichael, H.: 1971, Astrophys. J. 169, 357.Google Scholar
  44. Thomas, B. T. and Gall, R.: 1984, J. Geophys. Res. 89, 2991.Google Scholar
  45. Van Allen, J. A.: 1979, Geophys. Res. Letters 6, 566.Google Scholar
  46. Venkatesan, D., Shukla, A. K., and Agrawal, S. P.: 1982, Solar Phys. 81, 375.Google Scholar
  47. Wagner, W. J.: 1984, Ann. Rev. Astron. Astrophys. 22, 267.Google Scholar
  48. Wilson, R. M. and Hildner, E.: 1984, Solar Phys. 91, 169.Google Scholar
  49. Zirker, J. B. (ed.): 1977, Coronal Holes and High Speed Streams; A monograph from Skylab Workshop I, Colorado Associated University Press, Boulder, Colo., U.S.A.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Badruddin
    • 1
  • R. S. Yadav
    • 1
  • N. R. Yadav
    • 1
  1. 1.Department of PhysicsAligarh Muslim UniversityAligarhIndia

Personalised recommendations