Advertisement

Space Science Reviews

, Volume 10, Issue 1, pp 3–188 | Cite as

Atmospheric tides

  • Richard S. Lindzen
  • Sydney Chapman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meteorological and Geoastrophysical Abstracts 14 (1963), 3958–4019, ‘Lunar influences on atmospheric and geophysical phenomena’, by Wilhelm Nupon and Geza Thuronyi, gives 313 abstracts of date from 1825 to 1963 (but not complete for this period). It was prepared in conjunction with the IAGA/IAMAP Lunar Committee. Extensive bibliographies of such lunar tidal papers are given also by Chapman (1951) and Chapman and Westfold (1956).Google Scholar
  2. Airy, G. B.; 1877, Greenwich Meteorological Reductions, 1854–1873, Barometer, London (See pp. 10, 14, 30).Google Scholar
  3. Angot, A.: 1887, ‘Étude sur la marche diurne du baromètre’, Ann. Bur. meteorol. France. Google Scholar
  4. Appleton, E. V. and Weekes, K.: 1939, ‘On Lunar tides in the upper atmosphere’, Proc. Roy. Soc. A171, 171–187.Google Scholar
  5. Appleton, E. V. and Weekes, K.: 1948, ‘On lunar tides in the upper atmosphere’, Proc. Roy. Soc. London, A171, 171–187.Google Scholar
  6. Bacon, Roger: 1859, Opera (ed. J. S. Brewer), Rolls Series, London.Google Scholar
  7. Baker, W. G. and Martyn, D. F.: 1953, ‘Electric currents in the ionosphere’, Phil. Trans. Roy. Soc. London A246, 281–294.Google Scholar
  8. Bartels, J.: 1927, ‘Über die atmosphärischen Gezeiten’, Abh. Preuss. Meteorol. Inst. 8, Nr. 9.Google Scholar
  9. Bartels, J.: 1928, ‘Gezeitenschwingungen der Atmosphäre’, Handbuch der Experimentalphysik 25 (Geophysik 1), pp 163–210.Google Scholar
  10. Bartels, J.: 1932a, ‘Tides in the atmosphere’, Sci. Monthly 35, 110–130.Google Scholar
  11. Bartels, J.: 1932b, ‘Statistical methods for research on diurnal variations’, Terr. Magnet. Atmos. Elec. 37, 291–302.Google Scholar
  12. Bartels, J.: 1938, ‘Berechnung der lunaren atmosphärischen Gezeiten aus Terminablesungen am Barometer’, Gerlands Beiträge Geophys. 54, 56–75.Google Scholar
  13. Bartels, J.: 1954, ‘A table of daily integers, seasonal, solar, lunar and geomagnetic’, Sci. Report No. 2 AF 19(604)-503, Geophys. Inst. Univ. Alaska.Google Scholar
  14. Bartels, J.: 1957, ‘Gezeitenkräfte’, in Handbuch der Physik 48, 734–774, Springer, Berlin.Google Scholar
  15. Bartels, J. and Fanselau, G.: 1937, ‘Geophysikalischer Mondalmanach’, Z. Geophys. 13, 311–328.Google Scholar
  16. Bartels, J. and Fanselau, G.: 1938a, ‘Geophysical lunar almanac’, Terr. Magnet. Atmos. Elec. 43, 155–158.Google Scholar
  17. Bartels, J. and Fanselau, G.: 1938b, ‘Geophysikalische Mondtafeln 1850–1875’, Geophys. Inst.Potsdam, Abh. Nr. 2, Springer, Berlin.Google Scholar
  18. Bartels, J. and Horn, W.: 1952, ‘Gezeitenkräfte’, in Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, usw., 6 Aufl., 3, 271–283, Springer, Berlin.Google Scholar
  19. Bartels, J. and Johnston, H. F.: 1940, ‘Geomagnetic tides in horizontal intensity at Huancayo’, Terr. Magnet. Atmos. Elec. 45, 269–308; 485–512.Google Scholar
  20. Bartels, J. and Johnston, H. F.: 1940a, ‘Some features of the large geomagnetic tides in the horizontal force at Huancayo’, Trans. Amer. Geophys. Union, 1940, 273–287.Google Scholar
  21. Bartels, J. and Kertz, W.: 1952, ‘Gezeitenartige Schwingungen der Atmosphäre’, in Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, usw., 6 Aufl. 3, 674–685, Springer, Berlin.Google Scholar
  22. Bartels, J., Chapman, S., and Kertz, W.: 1952, ‘Gezeitenartige Schwingungen der Atmosphäre’, in Landolt-Börnstein, Zahlenwerte aus Physik, Chemi, Astronomie, Geophysik und Technik (ed. by J. Bartels and P. ten Bruggencate), vol. 3, Springer, Berlin, pp. 680–682. References giving details of these determinations can be found there.Google Scholar
  23. Belousov, S. L.: 1962, Tables of normalized associated Legendre-Polynomials, Pergamon Press, London.Google Scholar
  24. Bergsma, P. A.: 1871, ‘Lunar Atmospheric Tide’, Obsns. Magn. Meteor. Obs. Batavia 1, 19–25 (contains meteorological observations for 1865 to 1868). Calculations of this type, for individual years, carried out in routine fashion, have been published for the 40 years 1866–1905. See also summary for these years in 28 (for 1905), 102ff., published 1907.Google Scholar
  25. Best, N., Havens, R., and LaGow, H.: 1947, ‘Pressure and temperature of the atmosphere up to 120 km’, Phys. Rev. 71, 915–916.Google Scholar
  26. Beyers, N. J. and Miers, B. T.: 1965, ‘Diurnal temperature change in the atmosphere between 30 and 60 km over White Sands Missile Range’, J. Atmos. Sci. 22, 262–266.Google Scholar
  27. Beyers, N. J., Miers, B. T., and Reed, R. J.: 1966, ‘Diurnal tidal motions near the stratopause during 48 hours at White Sands Missile Range’, J. Atmos. Sci. 23, 325–333.Google Scholar
  28. Bjerknes, J.: 1948, ‘Atmospheric tides’, J. Marine Res., 7, 154–162.Google Scholar
  29. Blamont, J. E. and Teitelbaum, H.: 1968, ‘La rotation du vector vitesse horizontal dans les marées atmosphériques’, Ann. Geophys. 24, 287–391.Google Scholar
  30. Booker, J. R. and Bretherton, F. P.: 1967, ‘The critical layer for internal gravity waves in a shear flow’, J. Fluid Mech. 27, 513–539.Google Scholar
  31. Börnstein, R.: 1891, ‘Eine Beziehung zwischen dem Luftdruck und dem Stundenwinkel des Mondes’, Meteorol. Z. 8, 161–170.Google Scholar
  32. Bouvard, A.: 1830, ‘Mémoire sur les observations météorologiques faites à l'Observatoire Royal de Paris’, Mém. Acad. Roy. Sci. Paris 7, 267–341 (read April 1827, published after Laplace's death in 1830).Google Scholar
  33. Brillouin, M.: 1932, ‘Les latitudes critiques’, Compt. Rend. Acad. Sci. Paris 194, 801–804.Google Scholar
  34. Brooks, C. E. P.: 1917, ‘The reduction of temperature observations to mean of 24 hours and the elucidation of the diurnal variation in the continent of Africa’, Quart. J. Roy. Meteorol. Soc. 45, 375–387.Google Scholar
  35. Broun, J. A.: 1874, Trevandrum Magnetical Observations 1.Google Scholar
  36. Bruce, G. H., Peaceman, D. W., Rachford, H. H. Jr., and Rice, J. D.: 1953, Trans. Am. Inst. Min. Metall. Engnrs. 198, 79–92.Google Scholar
  37. Brunt, D.: 1939, Physical and Dynamical Meteorology, Cambridge University Press, Cambridge, England.Google Scholar
  38. Butler, S. T. and Small, K. A.: 1963, ‘The excitation of atmospheric oscillations’, Proc. Roy. Soc. A274, 91–121.Google Scholar
  39. Casson, L.: 1959, The Ancient Mariners, Gollancz, London.Google Scholar
  40. Chambers, C.: 1887, ‘On the luni-solar variations of magnetic declination and horizontal force at Bombay, and of declination at Trevandrum’, Phil. Trans. Roy. Soc. London A178, 1–43.Google Scholar
  41. Chapman, S.: 1913, ‘On the diurnal variations of the earth's magnetism produced by the moon and sun’, Phil. Trans. Roy. Soc. London A213, 279–321.Google Scholar
  42. Chapman, S.: 1918a, ‘The lunar atmospheric tide at Greenwich’, Quart. J. Roy. Meteor. Soc. 44, 271–280.Google Scholar
  43. Chapman, S.: 1918b, ‘An example of the determination of a minute periodic variation as illustrative of the law of errors’, Monthly Notices Roy. Astron. Soc. 78, 635–638.Google Scholar
  44. Chapman, S.: 1919a, ‘The solar and lunar diurnal variations of the earth's magnetism’, Phil. Trans. Roy. Soc., London A-218, 1–118.Google Scholar
  45. Chapman, S.: 1919b, ‘The lunar tide in the earth's atmosphere’, Quart. J. Roy. Meteorol. Soc. 45, 113–139.Google Scholar
  46. Chapman, S.: 1924a, ‘The semi-diurnal oscillation of the atmosphere’, Quart. J. Roy. Meteorol. Soc. 50, 165–195.Google Scholar
  47. Chapman, S.: 1924b, ‘Lunar atmospheric tide at Mauritius and Tiflis’, Quart. J. Roy. Meteorol. Soc. 50, 99–112 (abstract: Nature 113, 326).Google Scholar
  48. Chapman, S.: 1930, ‘On the determination of the lunar atmospheric tide’, Z. Geophys. 6, 396–420.Google Scholar
  49. Chapman, S.: 1932a, ‘The lunar diurnal variation of atmospheric temperature at Batavia, 1866–1928’, Proc. Roy. Soc., London A137, 1–24.Google Scholar
  50. Chapman, S.: 1932b, ‘On the theory of the lunar tidal variation of atmospheric temperature’, Mem. Roy. Meteorol. Soc. 4, 35–40.Google Scholar
  51. Chapman, S.: 1936, ‘The lunar atmospheric tide at Glasgow’, Proc. Roy. Soc. Edin. A56, 1–5.Google Scholar
  52. Chapman, S.: 1948, ‘Some meteorological advances since 1939’, Procès-Verbaux des Séances de l'Association de Météorologie, Oslo, 2–24, (Uccle, Belgium 1950).Google Scholar
  53. Chapman, S.: 1951, ‘Atmospheric tides and oscillations’, in Compendium of Meteorology, Boston, pp.262–274.Google Scholar
  54. Chapman, S.: 1952, ‘The calculation of the probable error of determinations of the lunar daily harmonic component variations in geophysical data’, Australian J. Sci. Res. A5, 218–222.Google Scholar
  55. Chapman, S.: 1956, ‘The electrical conductivity of the ionosphere: a review’, Nuovo Cim. (Suppl. 4) 4, Serie X, 1385–1412.Google Scholar
  56. Chapman, S.: 1961, ‘Regular motions in the ionosphere: electric and magnetic relationships’, Bull. Amer. Meteorol. Soc. 42, 85–100.Google Scholar
  57. Chapman, S.: 1967, ‘The correction for non-cyclic variation in harmonic analysis’, J. Atmos. Terr. Phys. 29, 1625–1627.Google Scholar
  58. Chapman, S.: 1969, ‘The lunar and solar semidiurnal variations of barometric pressure at Copenhagen, 1884–1949 (66 years)’, Quart. J. Roy. Meteorol. Soc. 95, 381–394.Google Scholar
  59. Chapman, S. and Austin, M.: 1934, ‘The lunar atmospheric tide at Buenos Aires 1891–1910’, Quart. J. Roy. Meteorol. Soc. 60, 23–28.Google Scholar
  60. Chapman, S. and Bartels, J.: 1940, Geomagnetism, Vols. I and II, Clarendon Press, Oxford.Google Scholar
  61. Chapman, S. and Miller, J. C. P.: 1940, ‘The statistical determination of lunar daily variations in geomagnetic and meteorological elements’, Monthly Not. Geophys. Suppl. 4, 649–669.Google Scholar
  62. Chapman, S. and Hofmeyr, W. L.: 1963, ‘The solar and lunar daily variations of barometric pressure at Kimberley (28.7°S, 24.8°E; 1202 meters), 1932–1960’, Pretoria Wea. Bur. J.Notos'12, 3–18.Google Scholar
  63. Chapman, S. and Falshaw, E.: 1922, ‘The lunar atmospheric tide at Aberdeen, 1869–1919’, Quart. J. Roy. Meteorol. Soc. 48, 246–250.Google Scholar
  64. Chapman, S. and Tschu, K. K.: 1948, ‘The lunar atmospheric tide at twenty-seven stations widely distributed over the globe’, Proc. Roy. Soc. A195, 310–323.Google Scholar
  65. Chapman, S. and Westfold, K. C.: 1956, ‘A comparison of the annual mean solar and lunar atmospheric tides in barometric pressure as regards their world-wide distribution of amplitude and phase’, J. Atmos. Terr. Phys. 8, 1–23.Google Scholar
  66. Charney, J. G. and Drazin, P. G.: 1961, ‘Propagation of planetary-scale disturbances from the lower into the upper atmosphere’, J. Geophys. Res. 66, 83–110.Google Scholar
  67. Charney, J. G. and Eliassen, A.: 1949, ‘A numerical method for predicting the perturbations of middle latitude westerlies’, Tellus 2, 38–54.Google Scholar
  68. Chiu, W. C.: 1953, ‘On the oscillations of the atmosphere’, Arch. Meteorol. Geophys. Biokl. A5, 280–303.Google Scholar
  69. CIRA: 1965, Caspar International Reference Atmosphere, North-Holland, Amsterdam.Google Scholar
  70. Craig, R. A.: 1965, The Upper Atmosphere, Academic Press, New York.Google Scholar
  71. Darwin, G. H.: 1901, The Tides; new edition, 1962, Freeman, San Francisco.Google Scholar
  72. Diehl, W. S.: 1948, Standard Atmospheric Tables and Data, NACA.Google Scholar
  73. Dikii, L. A.: 1965, ‘The terrestrial atmosphere as an oscillating system’, Izvestiya, Atmospheric and Oceanic Physics — English Edition, 1, 275–286.Google Scholar
  74. Dikii, L. A.: 1967, ‘Allowance for mean wind in calculating the frequencies of free atmospheric oscillations’, Izvestiya, Atmospheric and Oceanic Physics — English Edition, 4, 583–584.Google Scholar
  75. Doodson, A. T.: 1922, ‘The harmonic development of the tide-generating potential’, Proc. Roy. Soc. A100, 305–329.Google Scholar
  76. Duclay, F. and Will, R.: 1960, ‘Étude de la variation semi-diurne lunaire de la pression atmosphérique à Tamanrasset’, Comptes Rendus 251, 3028–3030.Google Scholar
  77. Duperier, A.: 1946, ‘A lunar effect on cosmic rays’, Nature 157, 296.Google Scholar
  78. Eckart, C.: 1960, Hydrodynamics of Oceans and Atmospheres, Pergamon Press, New York.Google Scholar
  79. Egedal, J.: 1956, ‘On the computation of lunar daily variations in geomagnetism: two simple methods’, Publ. Danske Meteorol. Inst. No. 22.Google Scholar
  80. Eisenlohr, O.: 1843, ‘Untersuchungen über das Klima von Paris und über die vom Monde bewirkte atmosphärische Ebbe und Fluth’, Pogg. Ann. Phys. Chemie 60, 161–212.Google Scholar
  81. Elford, W. G.: 1959, ‘A study of winds between 80 and 100 km in medium latitudes’, Planetary Space Sci. 1, 94–101.Google Scholar
  82. Eliassen, A. and Kleinschmidt, E.: 1957, ‘Dynamic Meteorology’, in Handbuch der Physik (S. Flügge, ed). 48, 1–154, Springer, Berlin.Google Scholar
  83. Eliassen, A. and Palm, E.: 1961, ‘On the transfer of energy in stationary mountain waves’, Geofysiske Publ. 22, 1–23.Google Scholar
  84. Elliot, C. M.: 1852, ‘On the lunar atmospheric tide at Singapore’, Phil. Trans. Roy. Soc. London 142, 125–129.Google Scholar
  85. Finger, F. G. and McInturff, R. M.: 1968, ‘The diurnal temperature range of the middle stratosphere’, J. Atmos. Sci. 25, 1116–1128.Google Scholar
  86. Flattery, T. W.: 1967, Hough Functions. Technical Report, No. 21, Dept. of Geophysical Sciences, University of Chicago.Google Scholar
  87. Frost, R.: 1960, ‘Pressure variation over Malaya and the resonance theory’, Air Ministry, Scient. Pap. 4, 13 pp.Google Scholar
  88. Geisler, J. E.: 1966, ‘Atmospheric winds in the middle latitude F-region’, J. Atmos. Terr. Phys. 28, 703–721.Google Scholar
  89. Giwa, F. B. A.: 1967, ‘Thermal conduction and viscosity and the choice of the upper level boundary condition in the theory of atmospheric oscillations’, Quart. J. Roy. Meteorol. Soc. 93, 242–246.Google Scholar
  90. Goldstein, S.: 1938, Modern Developments in Fluid Dynamics (2 vols.), Oxford University Press, Oxford.Google Scholar
  91. Golitsyn, G. S.: 1965, ‘Damping of small oscillations in the atmosphere’, Izvestiya, Atmospheric and Oceanic Physics- English Edition, 1, 82–89.Google Scholar
  92. Golitsyn, G. S. and Dikii, L. A.: 1966, ‘Oscillations of planetary atmospheres as a function of the rotational speed of the planet’, Izvestiya, Atmospheric and Oceanic Physics- English Edition, 2 pp 137–142.Google Scholar
  93. Goody, R. M.: 1960, ‘The influence of radiative transfer on the propagation of a temperature wave in a stratified diffusing medium’, J. Fluid Mech. 9, 445–454.Google Scholar
  94. Goody, R. M.: 1964, Atmospheric Radiation, Oxford University Press, London.Google Scholar
  95. Green, J. S. A.: 1965, ‘Atmospheric tidal oscillations: an analysis of the mechanics’, Proc. Roy. Soc. A288, 564–574.Google Scholar
  96. Greenhow, J. S. and Neufeld, E. L.: 1961, ‘Winds in the upper atmosphere’, Quart. J. Roy. Meteorol. Soc. 87, 472–489.Google Scholar
  97. Hann, J. v.: 1889, ‘Untersuchungen über die tägliche Oscillation des Barometers’, Denkschr. Akad. Wiss. Wien, Abt. I, 55, 49–121.Google Scholar
  98. Hann, J. v.: 1892,‘Weitere Untersuchungen über die tägliche Oscillation des Barometers’, Denkschr. Akad. Wiss. Wien 59, 297–356.Google Scholar
  99. Hann, J. v.: 1906, ‘Der tägliche Gang der Temperatur in der inneren Tropenzone’, Denkschr. Akad. Wiss. Wien 78, 249–366.Google Scholar
  100. Hann, J. v.: 1915, in Lehrbuch der Meteorologic (Leipzig, C. H. Tauchnitz), 3, Aufl. 1915; 4. Aufl. (with R. Süring), 1926; 5. Aufl.1938, W. Keller, Leipzig.Google Scholar
  101. Hann, J. v.: 1918a, ‘Untersuchungen über die tägliche Oscillation des Barometers. Die dritteltägige (achtstundige) Luftdruckschwankung’, Denkschr. Akad. Wiss. Wien 95, 1–64.Google Scholar
  102. Hann, J. v.: 1918b, ‘Die jährliche Periode der halbtägigen Luftdruckschwankung’, S.B. Akad. Wiss. Wien, Abt. IIa, 127, 263–365.Google Scholar
  103. Hann, J. v.: 1919, ‘Die ganztägige (24stundige) Luftdruckschwankung in ihrer Abhängigkeit von der Unterlage (Ozean Bodengestalt)’, Sitzb. Akad. Wiss. Wien, Abt. IIa, 128, 379–506. Reference [9] of Chapman, 1951, p. 110 gives corrections.Google Scholar
  104. Harris, I. and Priester, W.: 1965, ‘On the dynamical variation of the upper atmosphere’, J. Atmos. Sci. 22, 3–10.Google Scholar
  105. Harris, M. F.: 1959, ‘Diurnal and semidiurnal variations of wind, pressure and temperature in the troposphere at Washington, D.C.’, J. Geophys. Res. 64, 983–995.Google Scholar
  106. Harris, M. F., Finger, F. G., and Teweles, S.: 1962, ‘Diurnal variations of wind, pressure, and temperature in the troposphere and stratosphere over the Azores’, J. Atmos. Sci. 19, 136–149.Google Scholar
  107. Harris, M. F., Finger, F. G., and Teweles, S.: 1966, ‘Frictional and thermal influences in the solar semidiurnal tide’, Mon. Wea. Rev. 94, 427–447.Google Scholar
  108. Haurwitz, B.: 1940, ‘The motion of atmospheric disturbances on a spherical earth’, J. Mar. Res. 3, 254–267.Google Scholar
  109. Haurwitz, B.: 1951, ‘The perturbation equations in meteorology’, in Compendium of Meteorology (T. F. Malone, ed.), American Meteorological Soc., Boston, pp. 401–420.Google Scholar
  110. Haurwitz, B.: 1956, ‘The geographical distribution of the solar semidiurnal pressure oscillation’, Meteorol. Pap. 2 (5), New York University.Google Scholar
  111. Haurwitz, B.: 1957, ‘Atmospheric oscillations and meridional temperature gradient’, Beitr. Phys. Atmos. 30, 46–54.Google Scholar
  112. Haurwitz, B.: 1962a, ‘Die tägliche Periode der Lufttemperatur in Bodennähe und ihre geographische Verteilung’, Arch. Met. Geoph. Biokl. A12, 426–434.Google Scholar
  113. Haurwitz, B.: 1962b, ‘Wind and pressure oscillations in the upper atmosphere’, Arch. Meteorol.Geophys. Biokl. 13, 144–165.Google Scholar
  114. Haurwitz, B.: 1964, ‘Tidal phenomena in the upper atmosphere’, W.M.O. Rept., No. 146, T.P. 69.Google Scholar
  115. Haurwitz, B.: 1965, ‘The diurnal surface pressure oscillation’, Archiv. Meteorol. Geophys. Biokl. A14, 361–379.Google Scholar
  116. Haurwitz, B. and Cowley, Ann D.: 1965, ‘The lunar and solar air tides at six stations in North and Central America’, Mo. Wea. Rev. 93, 505–509.Google Scholar
  117. Haurwitz, B. and Cowley, Ann D.: 1966, ‘Lunar air tide in the Caribbean and its monthly variation’, Mo. Wea. Rev. 94, 303–306.Google Scholar
  118. Haurwitz, B. and Cowley, Ann D.: 1967, ‘New determinations of the lunar barometric tide’, Beitr. Phys. Atmos. 40, 243–261.Google Scholar
  119. Haurwitz, B. and Cowley, Ann D.: 1968, ‘Lunar and solar barometric tides in Australia’, Mo. Wea. Rev. 96, 601–605.Google Scholar
  120. Haurwitz, B. and Cowley, A. D.: 1968a, ‘Lunar tidal winds at four American stations’, Geophys. J. Roy. Astron. Soc. 15, 103–107.Google Scholar
  121. Haurwitz, B. and Cowley, A. D.: 1970, ‘The lunar barometric tide, its global distribution and annual variation’, Pure and Applied Geophys. 75, 1–29.Google Scholar
  122. Haurwitz, B. and Möller, F.: 1955, ‘The semidiurnal air-temperature variation and the solar air tide’, Archiv. Meteorol. Geophys. Biokl. A8, 332–350.Google Scholar
  123. Haurwitz, B. and Sepúlveda, G. M.: 1957, ‘The geographical distribution and seasonal variation of the semidiurnal pressure oscillation in high latitudes’, Archiv Meteorol. Geophys. Biokl., A10, 29–42.Google Scholar
  124. Hering, W. S. and Borden, T. R.: 1962, ‘Diurnal variations in the summer wind field over the central United States’, J. Atmos. Sci. 19, 81–86.Google Scholar
  125. Hines, C. O.: 1960, ‘Internal gravity waves at ionospheric heights’, Canad. J. Phys. 38, 1441–1481.Google Scholar
  126. Hines, C. O.: 1963, ‘The upper atmosphere in motion’, Quart. J. Roy. Meteorolog. Soc. 89, 1–42.Google Scholar
  127. Hines, C. O.: 1966, ‘Diurnal tide in the upper atmosphere’, J. Geophys. Res. 71, 1453–1459.Google Scholar
  128. Hodges, R. R. Jr.: 1967, ‘Generation of turbulence in the upper atmosphere by internal gravity waves’, J. Geophys. Res. 72, 3455–3458.Google Scholar
  129. Holmberg, E. R. R.: 1952, ‘A suggested explanation of the present value of the velocity of rotation of the earth’, Monthly Notices Roy. Astron. Soc. Geophys. Suppl. 6, 325–330.Google Scholar
  130. Hough, S. S.: 1897, ‘On the application of harmonic analysis to the dynamical theory of tides, Part I. On Laplace's ‘Oscillations of the first species’, and on the dynamics of ocean currents’, Phil. Trans. Roy. Soc. A189, 201–257.Google Scholar
  131. Hough, S. S.: 1898, ‘The application of harmonic analysis to the dynamical theory of the tides, Part II. On the general integration of Laplace's dynamical equations’, Phil. Trans. Roy. Soc. London A191, 139–185.Google Scholar
  132. Hunt, D. C. and Manabe, S.: 1968, ‘An investigation of thermal tidal oscillations in the earth's atmosphere using a general circulation model’, Mon. Wea. Rev. 96, 753–766.Google Scholar
  133. Hyde, W. W.: 1947, Ancient Greek Mariners, Oxford University Press, New York.Google Scholar
  134. Hylleraas, E. A.: 1939, ‘Über die Schwingungen eines stabil geschichteten, durch Meridiane begrenzten Meeres, I’, Astrophys. Norveg. 3, 139–164.Google Scholar
  135. Hyson, P.: 1968, ‘Thermistor mountings’, J. App. Meteorol. 7, 908–918.Google Scholar
  136. Jacchia, L. G.: 1963, ‘Variations of the earth's upper atmosphere as revealed by satellite drag’, Rev. Mod. Phys. 35, 973–991.Google Scholar
  137. Jacchia, L. G. and Kopal, Z.: 1951, ‘Atmospheric oscillations and the temperature profile of the upper atmosphere’, J. Meteorol. 9, 13–23.Google Scholar
  138. James, G. and James, R. C.: 1959, Mathematics Dictionary, Van Nostrand.Google Scholar
  139. Johnson, D. H.: 1955, ‘Tidal oscillations of the lower stratosphere’, Quart. J. Roy. Meteorol. Soc. 81, 1–8.Google Scholar
  140. Johnson, F. S.: 1953, ‘High altitude diurnal temperature changes due to ozone absorption’, Bull. Am. Meteorol. Soc. 34, 106–110.Google Scholar
  141. Kato, S.: 1956, ‘Horizontal wind systems in the ionospheric E region deduced from the dynamo theory of geomagnetic Sq variation, Part II’, J. Geomagnet. Geoelec. Kyoto 8, 24–37.Google Scholar
  142. Kato, S.: 1966, ‘Diurnal atmospheric oscillation, 1, eigenvalues and Hough functions’, J. Geophys. Res. 71, 3201–3209.Google Scholar
  143. Thomson, W. (later Lord Kelvin): 1882, ‘On the thermodynamic acceleration of the earth's rotation’, Proc. Roy. Soc. Edinb. 11, 396–405.Google Scholar
  144. Kertz, W.: 1951, ‘Theorie der gezeitenartigen Schwingungen als Eigenwertproblem’, Ann. Meteorol. 4, Suppl. 1.Google Scholar
  145. Kertz, W.: 1956a, ‘Die thermische Erregungsquelle der atmosphärischen Gezeiten’, Nachr. Akad. Wiss. Göttingen Math.-phys. Kl. No. 6, 145–166.Google Scholar
  146. Kertz, W.: 1956b, ‘Components of the semidiurnal pressure oscillation’, New York University, Dept. of Meteor, and Ocean., Sci. Rep. 4.Google Scholar
  147. Kertz, W.: 1956c, ‘The seasonal variations of the six-hourly planetary pressure and temperature waves’, New York Univ., Dept. of Meteor, and Ocean, Sci. Rep. 5.Google Scholar
  148. Kertz, W.: 1957, ‘Atmosphärische Gezeiten’, in Handbuch der Physik (ed. by S. Flügge), 48, 928–981, Springer, Berlin.Google Scholar
  149. Kertz, W.: 1959, ‘Partialwellen in den halb- und vierteltägigen gezeitenartigen Schwingungen der Erdatmosphäre’, Arch. Meteorol. Geophys. Biokl. A11, 48–63.Google Scholar
  150. King, J. W. and Kohl, H.: 1965, ‘Upper atmospheric winds and ionospheric drifts caused by neutral air pressure gradients’, Nature 206, 699–701.Google Scholar
  151. King-Hele, D. G., and Walker, D. M. C.: 1961, ‘Upper-atmosphere density during the years 1957 to 1961, determined from satellite orbits’, Space Res. 2, 918–957.Google Scholar
  152. Kiser, W. L., Carpenter, T. H., and Brier, G. W.: 1963, ‘The atmospheric tides at Wake Island’, Mo. Wea. Rev. 91, 566–572.Google Scholar
  153. Kondratyev, K. Ya.: 1965, Radiative Heat Exchange in the Atmosphere, Pergamon Press, London.Google Scholar
  154. Kuo, H. L.: 1968, ‘The thermal interaction between the atmosphere and the earth and propagation of diurnal temperature waves’, J. Atmos. Sci. 25, 682–706.Google Scholar
  155. Lamb, H.: 1910, ‘On atmospheric oscillations’, Proc. Roy. Soc. A84, 551–572.Google Scholar
  156. Lamb, H.: 1932, Hydrodynamics, Cambridge University Press, Cambridge, England. 4th edition 1916; 5th edition, 1924; 6th edition, 1932.Google Scholar
  157. Lamont, J.: 1868, Ann. Astron. Observ. Munich, Suppl. vol. 6.Google Scholar
  158. Landau, L. D. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon Press, London.Google Scholar
  159. Laplace, P. S. (later Marquis De La Place): 1799, Mécanique céleste, Paris (a) 2 (iv), 294–298.Google Scholar
  160. Laplace, P. S. (later Marquis De La Place): 1825, Mécanique céleste, Paris, (b) 5 (xiii), 145–167; (c) 5 (xiii), 237–243; (d) 5 (Supp.), 20–35 (dated 1827, but published after Laplace's death in 1830); (e) 5 (xii), 95. The substance of (b) and (c) was taken from ‘De l'action de la lune sur l'atmosphère’, Ann. Chim. (Phys.), 24 (1823), 280–294, and was reviewed, and partly translated, in ‘Berechnung der von dem Monde bewirkten atmosphärischen Fluth’, Pogg. Ann. Phys. Chem. 13 (1828), 137–149. Laplace also contributed ‘Additions’ on this subject to the Connaissance des Tems (sic) for 1826 and 1830.Google Scholar
  161. Lenhard, R. W.: 1963, ‘Variation of hourly winds at 35 to 65 km during one day at Eglin Air Force Base, Florida’, J. Geophys. Res. 68, 227–234.CrossRefzbMATHGoogle Scholar
  162. Leovy, C.: 1964, ‘Radiative equilibrium of the mesosphere’, J. Atmos. Sci. 21, 238–248.Google Scholar
  163. Liller, W. and Whipple, F. L.: 1954, ‘High altitude winds by meteor-train photography’, Spec. Suppl. to J. Atmos. Terr. Phys. 1, 112–130.Google Scholar
  164. Lindzen, R. S.: 1966a, ‘On the theory of the diurnal tide’, Mon. Wea. Rev. 94, 295–301.Google Scholar
  165. Lindzen, R. S.: 1966b, ‘On the relation of wave behavior to source strength and distribution in a propagating medium’, J. Atmos. Sci. 23, 630–632.Google Scholar
  166. Lindzen, R. S.: 1967a, ‘Thermally driven diurnal tide in the atmosphere’, Quart. J. Roy. Meteorol. Soc. 93, 18–42.Google Scholar
  167. Lindzen, R. S.: 1967b, ‘Planetary waves on beta-planes’, Mon. Wea. Rev. 95, 441–451.Google Scholar
  168. Lindzen, R. S.: 1967c, ‘Lunar diurnal atmospheric tide’, Nature 215, 1260–1261.Google Scholar
  169. Lindzen, R. S.: 1967d, ‘Reconsideration of diurnal velocity oscillation in the thermosphere’, J. Geophys. Res. 72, 1591–1598.Google Scholar
  170. Lindzen, R. S.: 1967e, ‘Physical processes in the mesosphere’, Proceedings of the IAMAP Moscow meeting on Dynamics of Large Scale Atmospheric Processes (ed. by A. S. Monin).Google Scholar
  171. Lindzen, R. S.: 1968a, ‘The application of classical atmospheric tidal theory’, Proc. Roy. Soc. A303, 299–316.Google Scholar
  172. Lindzen, R. S.: 1968b, ‘Vertically propagating waves in an atmosphere with Newtonian cooling inversely proportional to density’, Can. J. Phys. (in press).Google Scholar
  173. Lindzen, R. S., Batten, E. S., and Kim, J.-W.: 1968, ‘Oscillations in atmospheres with tops’, Mon. Wea. Rev. 96, 133–140.Google Scholar
  174. Lindzen, R. S. and Goody, R.: 1965, ‘Radiative and photochemical processes in mesospheric dynamics. Part I: Models for radiative and photochemical processes’, J. Atmos. Sci. 22, 341–348.Google Scholar
  175. Lindzen, R. S. and McKenzie, D. J.: 1967, ‘Tidal theory with Newtonian cooling’, Pure App. Geophys. 66, 90–96.Google Scholar
  176. Longuet-Higgins, M. S.: 1967, ‘The eigenfunctions of Laplace's tidal equations over a sphere’, Phil. Trans. Roy. Soc. A269, 511–607.Google Scholar
  177. Love, A. E. H.: 1913, ‘Notes on the dynamical theory of the tides’, Proc. London Math. Soc. 12, 309–314.Google Scholar
  178. Maeda, H.: 1955, ‘Horizontal wind systems in the ionospheric E-region deduced from the dynamo theory of the geomagnetic S qvariation, Part I’, J. Geomagnet. Geoelec. Kyoto 7, 121–132.Google Scholar
  179. Manabe, S., and Möller, F.: 1961, ‘On the radiative equilibrium and heat balance of the atmosphere’, Mon. Wea. Rev. 89, 503–532.Google Scholar
  180. Manring, E., Bedinger, J., Knaflich, H., and Layzer, D.: 1964, ‘An experimentally determined model for the periodic character of winds from 85–135 km’, NASA Contractor Rept., NASA CR-36.Google Scholar
  181. Margules, M.: 1890, ‘Über die Schwingungen periodisch erwarmter Luft’, Sitzber. Akad. Wiss. Wien, Abt. IIa, 99, 204–227.Google Scholar
  182. Margules, M.: 1892, ‘Luftbewegungen in einer rotierenden Sphäroidschale’, Sitzber. Akad. Wiss. Wien, Abt. IIa, 101, 597–626.Google Scholar
  183. Margules, M.: 1893, Sitzber. Akad. Wiss. Wien, Abt. IIa, 102, 11–56; 1369–1421.Google Scholar
  184. Martyn, D. F.: 1955, ‘Interpretation of observed F 2 winds as ionization drifts associated with the magnetic variations’, The Physics of the Ionosphere, Report of the Physical Society, London, 163–165.Google Scholar
  185. Martyn, D. F. and Pulley, O. O.: 1947, ‘Atmospheric tides in the ionosphere: Part II, Lunar tidal variations in the F-region near the magnetic equator’, Proc. Roy. Soc. A190, 273–288.Google Scholar
  186. Matsushita, S. and Campbell, W. H.: 1967, Physics of Geomagnetic Phenomena, Vol. I, Academic Press, New York and London (2 vols.).Google Scholar
  187. Midgely, J. E. and Liemohn, H. B.: 1966, ‘Gravity waves in a realistic atmosphere’, J. Geophys. Res. 71, 3729–3748.Google Scholar
  188. Miers, B. T.: 1965, ‘Wind oscillations between 30 and 60 km over White Sands Missile Range, New Mexico’, J. Atmos. Sci. 22, 382–387.Google Scholar
  189. Minzner, R. A., Champion, K. S. W., and Pond, H. L.: 1959, The ARDC Modal Atmosphere, 1959. (Air Force Surveys in Geophysics, No. 115.)Google Scholar
  190. Möller, F.: 1940, ‘Über den Tagesgang des Windes’, Meteor. Z. 57, 324–331.Google Scholar
  191. Morano, F.: 1899, ‘Marea atmosferica’, R. C. Accad., Lincei 8, 521–528.Google Scholar
  192. Mügge, R. and Möller, F.: 1932, ‘Zur Berechnung von Strahlungsströmen und Temperaturänderungen in Atmosphären von beliebigen Aufbau’, Z. Geophysik 8, 53–64.Google Scholar
  193. Nawrocki, P. J. and Papa, R.: 1963, Atmospheric Processes, Prentice-Hall, New Jersey.Google Scholar
  194. Neamtan, S. M.: 1946, ‘The motion of harmonic waves in the atmosphere’, J. Meteorol. 3, 53–56.Google Scholar
  195. Neumayer, G.: 1867, ‘On the lunar atmospheric tide at Melbourne’, Proc. Roy. Soc. 15, 489–501.Google Scholar
  196. Newton, I.: 1687, Philosophiae Naturalis Principia Mathematica, (a) Bk. 1, Prop. 66, Cor. 19, 20; Bk. 3, Prop. 24, 36, bd37, (b) Bk. d2, Prop. 48–50.Google Scholar
  197. Newton, I.: 1727, De Mundi Systemate, London, Sections 38-47, 49-54.Google Scholar
  198. Nunn, D.: 1967, A theoretical study of tides in the upper atmosphere, M.Sc. thesis, McGill University, Montreal.Google Scholar
  199. Palumbo, A.: 1960, ‘La marea atmosferica lunare a Catania’, Atti. Assoc. Geofis. Italia.Google Scholar
  200. Palumbo, A.: 1962, ‘La marea atmosferica lunare a Napoli’, Atti. Assoc. Geofis. Italia.Google Scholar
  201. Pekeris, C. L.: 1937, ‘Atmospheric oscillations’, Proc. Roy. Soc. A158, 650–671.Google Scholar
  202. Pekeris, C. L.: 1939, ‘The propagation of a pulse in the atmosphere’, Proc. Roy. Soc. A171, 434–449.Google Scholar
  203. Pekeris, C. L.: 1951, ‘Effect of the quadratic terms in the differential equations of atmospheric oscillations’, Natl. Adv. Comm. Aeronaut. Tech. Notes, 2314.Google Scholar
  204. Pekeris, C. L. and Alterman, Z.: 1959, ‘A method of solving nonlinear equations of atmospheric tides with applications to an atmosphere of constant temperature’, in The Atmosphere and the Sea in Motion, Rockefeller Institute Press, New York.Google Scholar
  205. Phillips, N. A.: 1966, ‘The equations of motion for a shallow rotating atmosphere and the ‘traditional approximation’’, J. Atmos. Sci. 23, 626–628.Google Scholar
  206. Phillips, N. A.: 1968, ‘Reply to ‘comments on Phillips’ simplification of the equations of motion', by G. Veronis’, J. Atmos. Sci. 25, 1155–1157.Google Scholar
  207. Pitteway, M. L. V. and Hines, C. O.: 1963, ‘The viscous damping of atmospheric gravity waves’, Can. J. Phys. 41, 1935.Google Scholar
  208. Platzman, G. W.: 1967, ‘A retrospective view of Richardson's book on weather prediction’, Bull. Amer. Meteor. Soc. 48, 514–550; see p. 539.Google Scholar
  209. Pramanik, S. K.: 1926, ‘The six-hourly variations of atmospheric pressure and temperature’, Mem. Roy. Meteorol. Soc. London 1, 35–57.Google Scholar
  210. Pressman, J.: 1955, ‘Diurnal temperature variations in the middle atmosphere’, Bull. Amer. Meteorol. Soc. 36, 220–223.Google Scholar
  211. Price, A. T.: 1969, ‘Daily variations of the geomagnetic field’, Space Sci. Rev. 9, 151–197.Google Scholar
  212. Rayleigh, 3rd Baron (Strutt, J. W.): 1890, ‘On the vibrations of an atmosphere’, Phil. Mag. (5) 29, 173–180; Scientific Papers 3, 333–340, Dover Publications, New York, 1964.Google Scholar
  213. Reed, R. J.: 1967, ‘Semidiurnal tidal motions between 30 and 60 km’, J. Atmos. Sci. 24, 315–317.Google Scholar
  214. Reed, R. J., McKenzie, D. J., and Vyverberg, Joan C.: 1966a, ‘Further evidence of enhanced diurnal tidal motions near the stratopause’, J. Atmos. Sci. 23, 247–251.Google Scholar
  215. Reed, R. J., McKenzie, D. J., and Vyverberg, Joan C.: 1966b ‘Diurnal tidal motions between 30 and 60 km in summer’, J. Atmos. Sci. 23, 416–423.Google Scholar
  216. Reed, R. J., Oard, M. J., and Sieminski, Marya: 1969, ‘A comparison of observed and theoretical diurnal tidal motions between 30 and 60 km’, Mon. Wea. Rev. 97, 456–459.Google Scholar
  217. Revah, I., Spizzichino, A., and Massebeuf, Mme.: 1967, ‘Marée semi-diurnelle et vents dominants zonaux mesurés à Garchy (France) de Novembre 1965 à Avril 1966’, Note Technique GRI/NTP/27 de Centre National d'Études des Télécommunications, Issy-les-Moulineaux, France.Google Scholar
  218. Richtmyer, R.: 1957, Difference methods for initial value problems, Interscience, New York.Google Scholar
  219. Robb, R. A.; see Chapman, S.: 1936, ‘The lunar atmospheric tide at Glasgow’, Proc. Roy. Soc. Edin. 56, 1–5.Google Scholar
  220. Robb, R. A. and Tannahill, T. R.: 1935, ‘The lunar atmospheric pressure inequalities at Glasgow’, Proc. Roy. Soc. Edin. 55, 91–96.Google Scholar
  221. Roberts, P. H.: 1967, An Introduction to Magnetohydrodynamics, American Elsevier, New York.Google Scholar
  222. Rodgers, C. D. and Walshaw, C. D.: 1966, ‘The computation of infrared cooling rate in planetary atmospheres’, Quart. J. Roy. Meteorol. Soc. 92, 67–92.Google Scholar
  223. Rooney, W. J.: 1938, ‘Lunar diurnal variation in earth currents at Huancayo and Tucson’, Terr. Magn. Atmos. Elec. 43, 107–118.Google Scholar
  224. Rosenberg, N. W. and Edwards, H. D.: 1964, ‘Observations of ionospheric wind patterns through the night’, J. Geophys. Res. 69, 2819–2826.Google Scholar
  225. Rosenthal, S. L. and Baum, W. A.: 1956, ‘Diurnal Variation of Surface Pressure over the North Atlantic Ocean’, Mo. Weather Rev. 84, 379–387.Google Scholar
  226. Rougerie, P.: 1957, ‘La marée barométrique à Paris’, Ann. de Geophys. 13, 203–210.Google Scholar
  227. Sabine, E.: 1847, ‘On the lunar atmospheric tide at St. Helena’, Phil. Trans. Roy. Soc. London 137, 45–50.Google Scholar
  228. Sawada, R.: 1954, ‘The atmospheric lunar tides’, New York Univ. Meteorol. Pap. 2 (3).Google Scholar
  229. Sawada, R.: 1956, ‘The atmospheric lunar tides and the temperature profile in the upper atmosphere’, Geophys. Mag. 27, 213–236.Google Scholar
  230. Sawada, R.: 1965, ‘The possible effect of oceans on the atmospheric lunar tide’, J. Atmos. Sci. 22, 636–643.Google Scholar
  231. Sawada, R.: 1966, ‘The effect of zonal winds on the atmospheric lunar tide’, Arch. Meteorol. Geophys. Biokl. A15, 129–167.Google Scholar
  232. Schmidt, A.: 1890, ‘Über die doppelte tägliche Oscillation des Barometers’, Meteor. Z. 7, 182–185.Google Scholar
  233. Schmidt, A.: 1919, ‘Zur dritteltägigen Luftdruckschwankung’ (from a letter to von Kann), Meteor. Z. 36, 29.Google Scholar
  234. Schmidt, A.: 1921, ‘Die Veranschaulichung der Resonanztheorie’ (in a review of Hann's 1919 paper) Meteor. Z. 38, 303–304.Google Scholar
  235. Schmidt, A.: 1935, Tafeln der normierten Kugelfunktionen, sowie Formeln zur Entwicklung, Engelhard-Reyer, Gotha.Google Scholar
  236. Schou, G.: 1939, ‘Mittel und Extreme des Luftdruckes in Norwegen’, Geofys. Publ. 14, No. 2.Google Scholar
  237. Schuster, A.: 1889, ‘The diurnal variation of terrestrial magnetism’, Phil. Trans. Roy. Soc., London A180, 467–518.Google Scholar
  238. Sellick, N. P.: 1948, ‘Note on the diurnal and semidiurnal pressure variation in Rhodesia’, Quar. J. Roy. Met. Soc. 74, 78–81.Google Scholar
  239. Sen, H. K. and White, M. L.: 1955, ‘Thermal and gravitational excitation of atmospheric oscillations’, J. Geophys. Res. 60, 483–495.Google Scholar
  240. Shaw, W. N.: 1936, Manual of Meteorology, Vol. 2, Comparative Meteorology, Cambridge University Press.Google Scholar
  241. Siebert, M.: 1954, ‘Zur theorie der thermischen Erregung gezeitenartiger Schwingungen der Erdatmosphäre’, Naturwissenschaften 41, 446.Google Scholar
  242. Siebert, M.: 1956a, ‘Analyse des Jahresganges der 1/n-tägigen Variationen des Luftdruckes und der Temperatur’, Nachr. Akad. Wiss. Göttingen Math-phys. Kl., No. 6, 127–144.Google Scholar
  243. Siebert, M.: 1956b, ‘Über die gezeitenartigen Schwingungen der Erdatmosphäre’, Ber. Deut. Wetterd. 4, 65–71; 87–88.Google Scholar
  244. Siebert, M.: 1957, ‘Tidal oscillations in an atmosphere with meridional temperature gradient’, Sci. Rept. No. 3, Project 429, N.Y. University, Dept. of Meteorol. Oceanogr.Google Scholar
  245. Siebert, M.: 1961, ‘Atmospheric tides’, in Advances in Geophysics, Vol. 7, Academic Press, New York, pp. 105–182.Google Scholar
  246. Simpson, G. C.: 1918, ‘The twelve-hourly barometer oscillation’, Quart. J. Roy. Meteorol. Soc. 44, 1–18.Google Scholar
  247. Solberg, H.: 1936, ‘Über die freien Schwingungen einer homogen Flüssigkeitenschicht auf der rotierenden Erde I.’, Astrophys. Norweg. 1, 237–340.Google Scholar
  248. Spar, J.: 1952, ‘Characteristics of the semidiurnal pressure waves in the United States’, Bull. Amer. Meteorol. Soc. 33, 438–441.Google Scholar
  249. Stolov, H. L.: 1954, ‘Tidal wind fields in the atmosphere’, J. Meteor. 12, 117–140.Google Scholar
  250. Sugiura, M. and Fanselau, G.: 1966, ‘Lunar phase numbers v and v′ for years 1850–2050’, NASA Rept., X-612–66–401, Goddard Space Flight Center, Greenbelt, Maryland, USA.Google Scholar
  251. Taylor, G. I.: 1917, ‘Phenomena connected with turbulence in the lower atmosphere’, Proc. Roy. Soc. A94, 137–155.Google Scholar
  252. Taylor, G. I.: 1929, 1930, ‘Waves and tides in the atmosphere’, Proc. Roy. Soc. A126, 169–183, 728.Google Scholar
  253. Taylor, G. I.: 1932, ‘The resonance theory of semidiurnal atmospheric oscillations’, Mem. Roy. Meteorol. Soc. 4, 41–52.Google Scholar
  254. Taylor, G. I.: 1936, ‘The oscillations of the atmosphere’, Proc. Roy. Soc. A156, 318–326.Google Scholar
  255. Thomson, W. (later Lord Kelvin): 1882, ‘On the thermodynamic acceleration of the earth's rotation’, Proc. Roy. Soc. Edinb. 11, 396–405.Google Scholar
  256. Tschu, K. K.: 1949, ‘On the practical determination of lunar and lunisolar daily variations in certain geophysical data’, Australian J. Sci. Res. A2, 1–24.Google Scholar
  257. Van der Stok, J. P.: 1885, ‘On the lunar atmospheric tide’, Obsns. Magn. Meteor. Obs. Batavia 6, (3)-(8), Appendix 2.Google Scholar
  258. Wallace, J. M. and F. R. Hartranft: 1969, ‘Diurnal wind variations; surface to 30 km’, Mon. Wea. Rev. 96, 446–455.Google Scholar
  259. Weekes, K. and Wilkes, M. V.: 1947, ‘Atmospheric oscillations and the resonance theory’, Proc. Roy. Soc. A192, 80–99.Google Scholar
  260. Wegener, A.: 1915, ‘Zur Frage der atmosphärischen Mondgezeiten’, Meteor. Z. 32, 253–258.Google Scholar
  261. Whipple, F. J. W.: 1918, ‘A note on the propagation of the semi-diurnal pressure wave’, Quart. J. Roy. Meteorol. Soc. 44, 20–23.Google Scholar
  262. Whipple, F. J. W.: 1930, ‘The great Siberian meteor and the waves, seismic and aerial, which it produced’, Quart. J. Roy. Meteor. Soc. 56, 287–303.Google Scholar
  263. Whittaker, E. T. and Watson, G. N.: 1927, A Course of Modern Analysis (4th edition), Cambridge University Press, London.Google Scholar
  264. Wilkes, M. V.: 1949, Oscillations of the Earth's Atmosphere, Cambridge University Press.Google Scholar
  265. Wilkes, M. V.: 1951, ‘The thermal excitation of atmospheric oscillations’, Proc. Roy. Soc. A207, 358–344.Google Scholar
  266. Wilkes, M. V.: 1952, ‘Worldwide oscillations of the earth's atmosphere’, Quart. J. Roy. Meteor. Soc. 78, 321–336.Google Scholar
  267. Wilkes, M. V.: 1962, ‘Oscillations of the earth's atmosphere with allowance for variation of temperature with latitude’, Proc. Roy. Soc. A271, 44–56.Google Scholar
  268. Wright, T. (ed.): 1863, A. Neckam: De naturis rerum libri duo, liber 2, cap. 98, Rolls Series, London.Google Scholar
  269. Wulf, O. R. and Nicholson, S. B.: 1947, ‘Terrestrial influences in the lunar and solar tidal motions of the air’, Terr. Magn. Atmos. Elect. 52, 175–182.Google Scholar
  270. Wurtele, M.: 1953, The initial-value lee-wave problem for the isothermal atmosphere, U.C.L.A. Sci. Rept., Dept. of Meteorology, No. 3.Google Scholar
  271. Yanowitch, M.: 1966, ‘A remark on the hydrostatic approximation’, Pure Appl. Geophys. 64, 169–172.Google Scholar
  272. Yanowitch, M.: 1967, ‘Effect of viscosity on gravity waves and the upper boundary condition’, J. Fluid Mech. 29, 209–231.Google Scholar

Copyright information

© D. Reidel Publishing Company 1969

Authors and Affiliations

  • Richard S. Lindzen
    • 1
  • Sydney Chapman
    • 2
    • 3
  1. 1.Dept. of Geophysical SciencesUniversity of ChicagoChicagoUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Geophysical InstituteUniversity of AlaskaCollegeUSA

Personalised recommendations