Advertisement

Journal of Molecular Evolution

, Volume 41, Issue 2, pp 211–223 | Cite as

Molecular phylogeny of the homoptera: a paraphyletic taxon

  • Carol D. von Dohlen
  • Nancy A. Moran
Articles

Abstract

Homoptera and Heteroptera comprise a large insect assemblage, the Hemiptera. Many of the plant sap-sucking Homoptera possess unusual and complex life histories and depend on maternally inherited, intracellular bacteria to supplement their nutritionally deficient diets. Presumably in connection with their diet and lifestyles, the morphology of many Homoptera has become greatly reduced, leading to major controversies regarding the phylogenetic affiliations of homopteran superfamilies. The most fundamental question concerns whether the Homoptera as a whole are monophyletic. Recent studies based on morphology have argued that the Homoptera Sternorrhyncha (Aphidoidea, Coccoidea, Psylloidea, Aleyrodoidea) is a sister group to a group comprising the Homoptera Auchenorrhyncha (Fulgoroidea, Cicadoidea, Cercopoidea, Cicadelloidea) and the Heteroptera, making the Homoptera paraphyletic. We sequenced the 5′ 580-680 base pairs of small-subunit (18S) ribosomal DNA from a selection of Homoptera, Hemiptera, and their putative outgroups, the Thysanoptera and Psocoptera, to apply molecular characters to the problem of Homoptera phylogeny. Parsimony, distance, maximum-likelihood, and bootstrap methods were used to construct trees from sequence data and assess support for the topologies produced. Molecular data corroborate current views of relationships within the Sternorrhyncha and Auchenorrhyncha based on morphology and strongly support the hypothesis of homopteran paraphyly as stated above. In addition, it was found that Homoptera Sternorrhyncha have extra, GC-rich sequence concentrated in a variable region of the 18S rDNA, which indicates that some unique evolutionary processes are occurring in this lineage.

Key words

Homoptera Heteroptera Hemiptera Paraphyletic taxon Phylogeny, 18S rDNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archie JW (1989) A randomization test for phylogenetic information in systematic data. Syst Zool 38:239–252Google Scholar
  2. Boudreaux HB (1979) Arthropod phylogeny with special reference to insects. J Wiley and Sons, New YorkGoogle Scholar
  3. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York, pp 297–332Google Scholar
  4. Byrne DN, Bellows TS (1991) Whitefly biology. Annu Rev Entomol 36:431–457Google Scholar
  5. Carmean D, Kimsey LS, Berbee ML (1992) 18S rDNA sequences and the holometabolous insects. Mol Phyl Evol 1:270–278Google Scholar
  6. Carpenter FM (1992) Treatise on invertebrate paleontology. Vol 3, Superclass Hexapoda. The Geological Society of America, Boulder, CO, and the University of Kansas, Lawrence, KAGoogle Scholar
  7. Carver M, Gross GF, Woodward TE (1991) Hemiptera (bugs, leafhoppers, cicadas, aphids, scale insects etc.). In: CSIRO (ed) The insects of Australia. A textbook for students and research workers, Vol I, 2nd ed. Melbourne University Press, Carlton, p 429Google Scholar
  8. Cobben RH (1978) Evolutionary trends in Heteroptera. II. Mouthpartstructures and feeding strategies. Mededelingen Landbouwhogeschool, Wageningen, The NetherlandsGoogle Scholar
  9. Evans JW (1946) A natural classification of leaf-hoppers (Jassoidea, Homoptera). Pt 1. External morphology and systematic position. Trans R Entomol Soc Lond 96:47–60Google Scholar
  10. Evans JW (1963) The phylogeny of the Homoptera. Annu Rev Entomol 8:77–94Google Scholar
  11. Faith DP, Cranston PS (1991) Could a cladogram this short have arisen by chance alone?: on permutation tests for cladistic structure. Cladistics 7:1–28Google Scholar
  12. Felsenstein J (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410Google Scholar
  13. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedGoogle Scholar
  14. Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57:379–404Google Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  16. Felsenstein J (1993) PHYLIP (phylogeny inference package). Version 3.5c. Distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  17. Gawel NJ, Bartlett AC (1993) Characterization of differences between whiteflies using RAPD-PCR. Insect Mol Biol 2:33–38Google Scholar
  18. Genetics Computer Group (1991) Program manual for the GCG package, version 7, April 1991. Madison, WIGoogle Scholar
  19. Goodchild AJP (1966) Evolution of the alimentary canal in the Hemiptera. Biol Rev 41:97–140Google Scholar
  20. Hamilton KGA (1981) Morphology and evolution of the rhynchotan head (Insecta: Hemiptera, Homoptera). Can Entomol 113:953–974Google Scholar
  21. Hendriks L, Van Broeckhoven C, Vandenberghe A, Van de Peer Y, De Wachter R (1988) Primary and secondary structure of the 18S ribosomal RNA of the bird spider Eurypelma califomica and evolutionary relationships among eukaryotic phyla. Eur J Biochem 177:15–20Google Scholar
  22. Hennig W (1981) Insect phylogeny. J Wiley and Sons, New YorkGoogle Scholar
  23. Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453Google Scholar
  24. Hodkinson ID (1974) The biology of the Psylloidea (Homoptera)—a review. Bull Entomol Res 64:325–339Google Scholar
  25. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179PubMedGoogle Scholar
  26. Kramer S (1950) The morphology and phylogeny of auchenorhynchous Homoptera (Insecta). III Biol Monog 20:1–11Google Scholar
  27. Kristensen NP (1973) The phylogeny of hexapod “orders.” A critical review of recent accounts. Z Zool Syst Evolut-forsch 13:1–44Google Scholar
  28. Kristensen NP (1981) Phylogeny of insect orders. Annu Rev Entomol 26:135–157Google Scholar
  29. Kristensen NP (1991) Phylogeny of extant hexapods. In: CSIRO (ed) The insects of Australia. A textbook for students and research workers, Vol I, 2nd ed. Melbourne University Press, Carlton, p 125Google Scholar
  30. Kukalová-Peck J (1991) Fossil history and the evolution of hexapod structures. In: CSIRO (ed) The insects of Australia. A textbook for students and research workers, vol 1, 2nd ed. Carlton, Melbourne University Press, p 141Google Scholar
  31. Kwon O, Ogino K, Ishikawa H (1991) The longest 188 ribosomal RNA ever known: nucleotide sequence and presumed secondary structure of the 188 rDNA of the pea aphid, Acyrthosiphon pisum. Eur J Biochem 202:827–833Google Scholar
  32. Labandiera CC, Sepkoski JJ Jr (1993) Insect diversity in the fossil record. Science 261:310–315Google Scholar
  33. Lyal CHC (1985) Phylogeny and classification of the Psocodea, with special reference to the lice (Psocodea: Phthiraptera). Syst Entomol 10:145–165Google Scholar
  34. MacGavin GC (1993) Bugs of the world. Facts on File, New YorkGoogle Scholar
  35. Maddison WP, Maddison DR (1992) MacClade. Analysis of phylogeny and character evolution. Version 3. Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  36. Miller DR, Kosztarab M (1979) Recent advances in the study of scale insects. Annu Rev Entomol 24:1–27Google Scholar
  37. Moran NA (1992) The evolution of aphid life cycles. Annu Rev Entomol 37:321–348Google Scholar
  38. Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:269–292CrossRefGoogle Scholar
  39. Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell B (1991) Evidence for the establishment of aphideubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324Google Scholar
  40. Nault LR, Rodriguez JG (1985) The leafhoppers and planthoppers. J Wiley and Sons, NYGoogle Scholar
  41. Nei M (1991) Relative efficiencies of different tree-making methods for molecular data. In: Miyamoto MM, Cracraft J (eds) Phylogenetic analysis of DNA sequences. Oxford, New York, pp 90–128Google Scholar
  42. Nelles L, Fang BL, Volckaert G, Vandenberghe A, De Wachter R (1984) Nucleotide sequence of a crustacean 18S ribosomal RNA gene and secondary structure of eukaryotec small subunit RNAs. Nucleic Acids Res 12:8749–8768Google Scholar
  43. Nur U (1971) Parthenogenesis in coccids (Homoptera). Am Zool 11: 301–308Google Scholar
  44. Ossianilsson F (1981) The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Pt 2. The families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae). Fauna Entomol Scand 7:223–593Google Scholar
  45. Poisson R, Pesson P (1951) Super-ordre des Hémiptéroides (Hemiptera Linné, 1758, Rhynchota Burmeister, 1835). In: Grassé P-P (ed) Traité de Zoologie: Anatomic, Systématique, Biologic. Tome X. Insectes superieurs, et Hémiptéroides. 2 vols. Masson, Paris, pp 1–975,976–1948Google Scholar
  46. Ross HH (1955) The evolution of insect orders. Entomol News 66: 197–208Google Scholar
  47. Ross HH (1965) A textbook of entomology, 3rd ed. Wiley, New YorkGoogle Scholar
  48. Saiki RK, Gelfand DH, Stoffel S, Scharf J, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedGoogle Scholar
  49. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  50. Schlee D (1969) Bau and Funktion des Aedeagus bei Psyllina und deren Bedeutung fur systematische Untersuchungen. Phylogenetische Studien an Hemiptera 111. Entkräftung eines Arguments gegen die Monophylie der Sternorrhyncha. Z Morphol Tiere 64:139–150Google Scholar
  51. Scudder GGE (1973) Recent advances in the higher systematics and phylogenetic concepts in entomology. Can Entomol 105:1251–1263Google Scholar
  52. Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotec small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387Google Scholar
  53. Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, ILGoogle Scholar
  54. Szelegiewicz H (1971) Autapomorphous wing characters in the recent subgroups of Sternorrhyncha (Hemiptera) and their significance in the interpretation of the Paleozoic members of the group. Ann Zool 29:1–67Google Scholar
  55. Tautz D, Hancock JM, Webb DA, Tautz C, Dover GA (1988) Complete sequences of the rRNA genes of Drosophila melanogaster. Mol Evol Biol 5:366–376Google Scholar
  56. Theron JG (1958) Comparative studies on the morphology of male scale insects (Homoptera: Coccoidea). Ann Univ Stellenbosch 34: 1–71Google Scholar
  57. Vossbrinck CR, Maddox JV, Friedman S, Debrunner-Vossbrinck BA, Woese CR (1987) Ribosomal RNA sequence suggests microsporidia are extremely ancient eukaryotes. Nature 326:411–414CrossRefPubMedGoogle Scholar
  58. Wheeler WC, Schuh RT, Bang R (1993) Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets. Entomol Scand 24:121–137Google Scholar
  59. Wootton RJ (1981) Paleozoic insects. Ann Rev Entomol 26:319–344Google Scholar
  60. Wootton RJ, Betts CR (1986) Homology and function in the wings of Heteroptera. Syst Entomol 11:389–400Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • Carol D. von Dohlen
    • 1
  • Nancy A. Moran
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations