Journal of Molecular Evolution

, Volume 41, Issue 2, pp 203–210

Analyses of ribosomal RNA sequences from glaucocystophyte cyanelles provide new insights into the evolutionary relationships of plastids

  • Thomas A. Helmchen
  • Debashish Bhattacharya
  • Michael Melkonian


Glaucocystophyte algae (sensu Kies, Berl. Deutsch. Bot. Ges. 92, 1979) contain plastids (cyanelles) that retain the peptidoglycan wall of the putative cyanobacterial endosymbiont; this and other ultrastructural characters (e.g., unstacked thylakoids, phycobilisomes) have suggested that cyanelles are “primitive” plastids that may represent undeveloped associations between heterotrophic “host” cells (i.e., glaucocystophytes) and cyanobacteria. To test the monophyly of glaucocystophyte cyanelles and to determine their evolutionary relationship to other plastids, complete 16S ribosomal RNA sequences were determined for Cyanophora paradoxa, Glaucocystis nostochinearum, Glaucosphaera vacuolata, and Gloeochaete wittrockiana. Plastid rRNAs were analyzed with the maximum-likelihood, maximumparsimony, and neighbor joining methods. The phylogenetic analyses show that the cyanelles of C. paradoxa, G. nostochinearum, and G. wittrockiana form a distinct evolutionary lineage; these cyanelles presumably share a monophyletic origin. The rDNA sequence of G. vacuolata was positioned within the nongreen plastid lineage. This result is consistent with analyses of nuclear-encoded rRNAs that identify G. vacuolata as a rhodophyte and support its removal from the Glaucocystophyta. Results of a global search with the maximumlikelihood method suggest that cyanelles are the first divergence among all plastids; this result is consistent with a single loss of the peptidoglycan wall in plastids after the divergence of the cyanelles. User-defined tree analyses with the maximum-likelihood method indicate, however, that the position of the cyanelles is not stable within the rRNA phylogenies. Both maximumparsimony and neighbor-joining analyses showed a close evolutionary relationship between cyanelles and nongreen plastids; these phylogenetic methods were sensitive to inclusion/exclusion of the G. wittrockiana cyanelle sequence. Base compositional bias within the G. wittrockiana 16S rRNA may explain this result. Taken together the phylogenetic analyses are interpreted as supporting a near-simultaneous radiation of cyanelles and green and nongreen plastids; these organelles are all rooted within the cyanobacteria.

Key words

Cyanelles Cyanophora paradoxa Endosymbiosis Evolution Glaucocystophyta Glaucophyta Phylogeny Plastid 16S ribosomal RNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhattacharya D, Helmchen T, Melkonian M (1995a) Molecular evolutionary analyses of nuclear-encoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphidae and the Chlorarachniophyta. J Euk MicrobiolGoogle Scholar
  2. Bhattacharya D, Helmchen T, Bibeau C, Metkonian M (1995b) Comparisons of nuclear-encoded small- subunit ribosomal RNAs reveal the evolutionary position of the Glaucocystophyta. Mol. Biol. Evol.Google Scholar
  3. Bohnert HJ, Crouse EJ, Pouyet J, Mucke H, Löffelhardt W (1982) The subcellular localization of DNA components from Cyanophora paradoxa, a flagellate containing endosymbiotic cyanelles. Eur J Biochem 126:381–388Google Scholar
  4. Bourrelly P (1970) Les algues d'eau douce. Tome III: Les algues bleues et rouges. Les eugleniens, peridiniens et cryptomonadiniens. N. Boubée and Cie, ParisGoogle Scholar
  5. Cavalier-Smith T (1987) Glaucophyceae and the origin of plants. Evol Trends Plants 2:75–78Google Scholar
  6. Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994PubMedGoogle Scholar
  7. Douglas SE, Turner S (1991) Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor. J Mol Evol 33:267–273Google Scholar
  8. Douglas SE, Murphy CA (1994) Structural, transcriptional and phylogenetic analyses of the atpB gene cluster from the plastid of Cryptomonas ϕ (Cryptophyceae). J Phycol 30:329–340Google Scholar
  9. Douglas SE, Durnford DG, Morden CW (1990) Nucleotide sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Cryptomonas ϕ: evidence supporting the polyphyletic origin of plastids. J Phycol 26:500–508Google Scholar
  10. Douglas SE, Murphy CA, Spencer DF, Gray MW (1991) Cryptomonad algae are evolutionary chimeras of two phylogenetically distinct unicellular eukaryotes. Nature 350:148–151Google Scholar
  11. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  13. Felsenstein J (1993) PHYLIP manual, version 3.5c. Department of Genetics, University of Washington, SeattleGoogle Scholar
  14. Geitler L (1923) Der Zellbau von Glaucocystis nostochinearum und Gloeochaete wittrockiana and die Chromatophoren-Symbiosetheorie von Mereschkowski. Arch Protistenk 47:1–24Google Scholar
  15. Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann NY Acad Sci 361:193–207Google Scholar
  16. Gibbs S (1993) The evolution of algal chloroplasts. In: Lewin RA (ed) Origins of plastids. Chapman and Hall, New York, p 107Google Scholar
  17. Gillott M (1990) Phylum Cryptophyta (Cryptomonads). In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, Boston, p 139Google Scholar
  18. Giovannoni S, Turner S Olsen G, Barns S, Lane D, Pace N (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592Google Scholar
  19. Giovannoni SJ, Wood N, Huss V (1993) Molecular phylogeny of oxygenic cells and organelles based on small-subunit ribosomal RNA sequences. In: Lewin RA (ed) Origins of plastids. Chapman and Hall, New York, p 159Google Scholar
  20. Gray MW (1989) The evolutionary origins of organelles. Trends Genet 5:294–299Google Scholar
  21. Greenwood AD, Griffiths HB, Santore UJ (1977) Chloroplasts and cell compartments in Cryptophyceae. Br Phycol J 12:119Google Scholar
  22. Hall WT, Claus G (1963) Ultrastructural studies on the blue-green algal symbiont in Cyanophora paradoxa Korschikoff. J Cell Biol 19: 551–563Google Scholar
  23. Hall WT, Claus G (1967) Ultrastructural studies on the cyanelles of Glaucocystis nostochinearum Itzigsohn. J Phycol 2:37–51Google Scholar
  24. Herdman M, Stanier R (1977) The cyanelle: chloroplast or endosymbiotic procaryote? FEMS Microbiol Lett 1:7–12Google Scholar
  25. Hultman T, Bergh S, Moks T, Uhlen M (1991) Bidirectional solidphase sequencing of in vitro amplified plasmid DNA. Biotechniques 10:83–84Google Scholar
  26. Huson DH, Wetzel R (1994) SplitsTree, V1.0. FSP Math, Universität Bielefeld, GermanyGoogle Scholar
  27. Huss VAR, Giovannoni SJ (1992) Primary structures of the chloroplast small subunit ribosomal RNA gene from Chlorella vulgaris. Nucleic Acids Res 17:9487Google Scholar
  28. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN(ed) Mammalian protein molecules. Academic Press, New York, p 21Google Scholar
  29. Kies L (1974) Elektronenmikroskopische Untersuchungen an Paulinella chromatophora Lauterborn, einer Thekamöbe mit blaugrtinen Endosymbionten (Cyanellen). Protoplasma 80:69–89Google Scholar
  30. Kies L (1979) Zur systematischen Einordnung von Cyanophora paradoxa, Gloeochaete wittrockiana and Glaucocystis nostochinearum. Berl Deutsch Bot Ges 92:445–454Google Scholar
  31. Kies L (1992) Glaucocystophyceae and other protists harbouring procaryotic endocytobionts. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Biopress Limited, Bristol, p 354Google Scholar
  32. Kies L, Kremer BP (1986) Typification of the Glaucocystophyta. Taxon 35:128–133Google Scholar
  33. Kies L, Kremer BP (1990) Phylum Glaucocystopyta. In Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, Boston, p 152Google Scholar
  34. Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of sequence evolution. J Mol Evol 16:111–120Google Scholar
  35. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order of the Hominoidea. J Mol Evol 29: 170–179PubMedGoogle Scholar
  36. Korshikov AA (1930) Glaucosphaera vacuolata, a new member of the Glaucophyceae. Arch Protistenk 70:217–222Google Scholar
  37. Leipe DD, Wainright PO, Gunderson JH, Porter D, Patterson DJ, Valois F, Himmerich S, Sogin ML (1994) The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrinthuloides minuta and Cafeteria roenbergensis. Phycologia 33:369–377Google Scholar
  38. Lockhart PJ, Howe CJ, Bryant DA, Beanland TJ, Larkum AWD (1992) Substitutional bias confounds inference of cyanelle origins from sequence data. J Mol Evol 34:153–162Google Scholar
  39. Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612Google Scholar
  40. Margulis L (1981) Symbiosis in cell evolution. Freeman, ChicagoGoogle Scholar
  41. Martin W, Somerville CC, Loiseaux-de Goer S (1992) Molecular phylogenies of plastid origins and algal evolution. J Mol Evol 35:385–404Google Scholar
  42. McCracken DA, Nadavukaren MJ, Cain JR (1980) A biochemical and ultrastructural evaluation of the taxonomic position of Glaucosphaera vacuolata Korsh. New Phytol 86:39–44Google Scholar
  43. McFadden GI, Melkonian M (1986) Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25:551–557Google Scholar
  44. McFadden GI, Gilson PR, Hill DRA (1994) Goniomonas: rRNA sequences indicate that this phagotrophic flagellate is a close relative of the host component of cryptomonads. Ent J Phycol 29:29–31Google Scholar
  45. Mereschkowsky C (1905) Über Natur and Ursprung der Chromatophoren im Pflanzenreiche. Biol Zentralbl 25:593–604Google Scholar
  46. Mereschkowsky C (1910) Theorien der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre der Entstehung der Organismen. Biol Zentralbl 30:278–303Google Scholar
  47. Morden CW, Golden SS (1991) Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase from the chlorophyll b-containing prokaryote Prochlorothrix hollandica. J Mol Evol 32:379–395Google Scholar
  48. Morden CW, Delwiche CF, Kuhsel M, Palmer JD (1992) Gene phylogenies and the endosymbiotic origin of plastids. Biosystems 28: 75–90Google Scholar
  49. Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) Fast DNA ml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10:41–48Google Scholar
  50. Palmer JD (1993) A genetic rainbow of plastids. Nature 364:762–763Google Scholar
  51. Palenik R, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355:265–267Google Scholar
  52. Pascher A (1929) Uber die Natur der blaugrünen Chromatophoren des Rhizopoden Paulinella chromatophora. Zool Anz 81:189–194Google Scholar
  53. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedGoogle Scholar
  54. Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  55. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  56. Schlösser UG (1982) Sammlung von Algenkulturen. Berl Deutsch Bot Ges 95:181–276Google Scholar
  57. Schlösser UG (1984) Sammlung von Algenkulturen: Additions to the collection since 1982. Berl Deutsch Bot Ges 97:465–475Google Scholar
  58. Schnepf E (1966) Zur Cytologie and taxonomischen Einordnung von Glaucocystis. Arch Mikrobiol 55:149–174Google Scholar
  59. Skuja H (1954) Glaucophyta. In: Melcher H, Werdermann E (eds) Syllabus der Pflanzenfamilien. Borntraeger, Berlin, p 56Google Scholar
  60. Sogin ML, Elwood HJ, Gunderson JH (1986) Evolutionary diversity of eukaryotic small-subunit rRNA genes. Proc Natl Acad Sci USA 83:1383–1387Google Scholar
  61. Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, V3.1.1. Illinois Natural History Survey, ChampaignGoogle Scholar
  62. Valentin K, Zetsche K (1990) Nucleotide sequence of the gene for the large subunit of Rubisco from Cyanophora paradoxa: phylogenetic implications. Curr Genet 18:199–202Google Scholar
  63. Whatley JM (1993) Membranes and plastid origins. In: Lewin RA (ed) Origins of plastids. Chapman & Hall, New York, p 77Google Scholar

Copyright information

© Springer-Verlag New York Inc 1995

Authors and Affiliations

  • Thomas A. Helmchen
    • 1
  • Debashish Bhattacharya
    • 1
  • Michael Melkonian
    • 1
  1. 1.Botanisches InstitutLehrstuhl I, Universitat zu KölnKölnGermany

Personalised recommendations