Applied Microbiology and Biotechnology

, Volume 33, Issue 1, pp 31–35 | Cite as

Sugar-cane molasses fermentation by Zymomonas mobilis

  • Monica B. Doelle
  • Horst W. Doelle


Two different quality types of sugar-cane molasses containing a total sugar content of 48%–50% (w/v) and 35%–42% (w/v) were investigated for Zymomonas biothanol production. Molasses concentrations of up to 250 g/l (1:3 dilution) were successfully fermented within 24 h despite a higher salt concentration in the lower grade molasses. Higher molasses concentrations (300 g/l) led to fructose accumulation. The addition of sucrose to a final sugar concentration of 15% (w/v) led to 10% (v/v) ethanol with conversion efficiencies up to 96%. Sorbitol levels were negligible, but increased up to tenfold upon addition of invertase.


Fermentation Fructose Conversion Efficiency Sorbitol Sugar Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amin G, Doelle HW (1989) Vertical rotating in mobilized reactor of the bacterium Zymomonas mobilis for stable long term continuous ethanol production. Biotechnol Techniques 3:95–100Google Scholar
  2. Amin G, Doelle HW, Greenfield PF (1987) Ethanol production from sucrose by immobilized Zymomonas mobilis cells in polyurethane foam. Biotechnol Lett 9:225–228Google Scholar
  3. Blackbeard JR, Doelle HW (1983) The effect of glucose on the sucrose hydrolysing activity of Zymomonas mobilis. Eur J Appl Microbiol Biotechnol 17:261–263Google Scholar
  4. Borrego F, Obon JM, Canoves M, Manjon A, Iborra JL (1988) PH influence on ethanol production and retained biomass in a passively immobilized Zymomonas mobilis system. Biotechnol Lett 10:437–442Google Scholar
  5. Borzani W (1987) Kinetics of ethanol production during the reactor feeding phase in constant fedbatch fermentation of molasses. Biotechnol Bioeng 29:844–849Google Scholar
  6. Converti A, Perego P, Loeli A, Parisi F, Borglei M del (1985) A kinetic study of Saccharomyces strains: performance at high sugar concentrations. Biotechnol Bioeng 27:1108–1114Google Scholar
  7. Cruz MR de Melo, Borzani W (1980) Fermentaçao alcoólica de melaco e de caldo de cana-de-açucar por Zymomonas (ensarios preliminares). Rev Bras Tecnol 11:51–57Google Scholar
  8. Doelle MB, Doelle HW (1989) Ethanol production from sugar-cane syrup using Zymomonas mobilis. J Biotechnol 11:25–36Google Scholar
  9. Doelle HW, Greenfield PF (1985) The production of ethanol from sucrose using Zymomonas mobilis. Appl Microbiol Biotechnol 22:405–410Google Scholar
  10. Doelle MB, Millichip RJ, Doelle HW (1989) The production of ethanol from corn using inoculum cascading of Zymomonas mobilis. Process Biochem 24:137–140Google Scholar
  11. Fein JE, Barber DL, Charley RC, Bararidge TJ, Lawford HG (1984) Effect of commercial feedstocks on growth and morphology of Zymomonas mobilis. Biotechnol Lett 6:123–128Google Scholar
  12. Grote W, Rogers PL (1985) Ethanol purification from sucrosebased raw materials using immobilized cells of Zymomonas mobilis. Biomass 8:169–184Google Scholar
  13. Gunasekaran P, Karunakaran T, Kasthuribai M (1986) Fermentation pattern of Zymomonas strains on different substrates a comparative study. J Biosci (Bangalore) 10:181–186Google Scholar
  14. Haraldson A, Bjorling T (1981) Yeast strains for concentrated substrates. Eur J Appl Microbiol Biotechnol 13:34–38Google Scholar
  15. Haraldson A, Rosen CG (1982) Studies on continuous ethanol fermentation of sugarcane molasses. II: Continuous alcohol fermentation and endproduct removal in a laboratory scale plant. Eur J Microbiol Biotechnol 14:220–224Google Scholar
  16. Hsie MC, Su YC (1980) Improvement of alcohol fermentation. In: Proceedings of the 4th International Symposium on Alcohol Fuels Technology, vol 1. pp 45–48Google Scholar
  17. Jones LP, Alexander D, Zeijic JE (1982) Ethanol production from sucrose and sugarbeet substrates using a mixed culture of Saccharomyces spp. Dev Ind Microbiol 23:367–377Google Scholar
  18. Jones P, Greenfield PF (1984) A review of yeast ionic requirements. I: Growth and fermentation requirements. Process Biochem 19:48–60Google Scholar
  19. Kapoor PD, Misra AK (1980) An inexpensive method of pretreatment of molasses for distillery industry. In: Proceedings of the Annual Convention of the Sugar Technology Association India, Kanpur, pp G55–G62Google Scholar
  20. Kosaric N, Duvnjak Z, Stewart GG (1981) Fuel ethanol from biomass: production, economics and energy. Adv Biochem Eng 20:119–151Google Scholar
  21. Koshimizu LH, Valdeolivas Gomez EI, Bueno Netto CL, Melo Cruz MR de, Vairo MLR, Borzani W (1984) Constant fedbatch ethanol fermentation of molasses. J Ferment Technol 62:205–210Google Scholar
  22. Layokun SK (1984) Use of palm wine cultures for ethanol production from blackstrap molasses with particular reference to conditions in the tropics. Process Biochem 19:180–184Google Scholar
  23. Lyness E, Doelle HW (1980) Effect of temperature on sucrose to ethanol conversion by Zymomonas mobilis strains. Biotechnol Lett 2:549–554Google Scholar
  24. Lyness E, Doelle HW (1981) Fermentation pattern of sucrose to ethanol conversion by Zymomonas mobilis Biotechnol Bioeng 23:1449–1460Google Scholar
  25. Lyness E, Doelle HW (1983) Levansucrase from Zymomonas mobilis. Biotechnol Lett 5:345–350Google Scholar
  26. Maiorella B, Wilke ChR, Blank HW (1981) Alcohol production and recovery. Adv Biochem Eng 20:44–92Google Scholar
  27. Millichip RJ, Doelle HW (1989) Large scale ethanol production from milo (= sorghum) using Zymomonas mobilis. Process Biochem 24:141–145Google Scholar
  28. Murdiyatmo U, Tedjowalijono (1987) Ethanol from cane molasses by continuous fermentation using immobilized yeast. Int Sugar J 89:154–157Google Scholar
  29. Murphy NF de (1984) Fermentation of high test molasses. Sugar y Azucar 79:37–43Google Scholar
  30. Murphy NF (1988a) Zymomonas mobilis batch and fed-batch fermentation of high test molasses-ethanol production. J Agric Univ PR 72:485–488Google Scholar
  31. Murphy NF (1989b) Ethanol production from blackstrap molasses by Zymomonas mobilis and Saccharomyces sp. — fed-batch culture and batch culture. J Agric Univ PR 72:483–484Google Scholar
  32. Murphy NF (1989c) Batch fermentation patterns for different strains of Zymomonas in high test molasses and blackstrap molasses-ethanol production by Zymomonas mobilis and Zymomonas anerobia. J Agric Univ PR 72:475–481Google Scholar
  33. Park YK, Sato HH (1982) Fungal invertase as an aid for fermentation of cane molasses into ethanol. Appl Eur Microbiol 44:988–989Google Scholar
  34. Patil SG, Patil BG (1989) Top and bottom yeasts together accelerate ethanol production in molasses fermentation. Biotechnol Lett 11:359–364Google Scholar
  35. Patil SG, Gokhale DV, Patil BG (1986) Enhancement in ethanol production from cane molasses by skim milk supplementation. Enzyme Microb Technol 8:481–484Google Scholar
  36. Patil SG, Gokhale DV, Patil BG (1989) Novel supplements enhance the ethanol production in cane molasses fermentation by recycling yeast cells. Biotechnol Lett 11:213–216Google Scholar
  37. Paturau JM (1982) By-products of the cane sugar industry. Elsevier Scientific Publications, AmsterdamGoogle Scholar
  38. Potgieter HJ (1981) Biomass conversion in South Africa. Adv Biochem Eng 20:181–187Google Scholar
  39. Queiroz M de Fatima de, Vairo MLR, Borzani W (1983) Influence of initial yeast and sugar concentrations on the quantity of yeast produced in batch ethanol fermentation of sugarcane blackstrap molasses. J Ferment Technol 61:215–218Google Scholar
  40. Rhee SK, Pagan RJ, Lefebvre MF, Wong L, Rogers PL (1984) Ethanol production from desalted molasses using Saccharomyces uvarum and Zymomonas mobilis. J Ferment Technol 62:297–300Google Scholar
  41. Richards L, Doelle HW (1989) Fermentation of potato mash, potato mash/maltrin mixtures, maltrin and wheat starches using Zymomonas mobilis. MIRCEN J Appl Microbiol Biotechnol 5:307–317Google Scholar
  42. Rogers PL (1985) New developments in ethanol production technology using Zymomonas mobilis on molasses and cassava substrates. Biotechnology 3:303–312Google Scholar
  43. Rose D (1976) Yeasts for molasses alcohol. Process Biochem 11:10–12Google Scholar
  44. Saigal D, Viswanathan L (1982) Effect of ion exchange treatment of molasses on alcoholic fermentation. Indian J Microbiol 22:162–165Google Scholar
  45. Schugerl K (1985) Foam formation. Foam suppression and the effect of foam on growth. Process Biochem 20:122–123Google Scholar
  46. Sedha RK, Verma G, Gupta RP, Tewari HK (1984) Ethanol production from molasses using cell recycling of Saccharomyces cerevisiae. J Ferment Technol 62:471–476Google Scholar
  47. Sharma S, Dhamiya SS, Dahiya DS, Baridya MC (1980) Fermentation of alcohol from cane molasses by fast fermenting yeast. Indian J Microbiol 20:34–38Google Scholar
  48. Shvets VN, Todosiichuk SR, Reshetuyak LR, Grushitskii NI, Torop LN (1985) Fermentation of molasses wort by association of the yeasts Saccharomyces cerevisiae and Saccharomyces carlsbergensis. Izv Vyssh Uchebn Zaved Pishch Tekhnol 1:53–57Google Scholar
  49. Torres EF, Baratti J (1987) The effect of pH, temperature and sucrose concentration on high productivity continuous ethanol fermentation using Zymomonas mobilis. Appl Microbiol Biotechnol 27:121–128Google Scholar
  50. Viikari L (1988) Carbohydrate metabolism in Zymomonas. CRC Crit Rev Biotechnol 7:237–261Google Scholar
  51. Vitolo M, Vairo MLR, Barzani W (1985) Invertase activity of intact cells of Saccharomyces cerevisiae growing on sugarcane molasses. I. Steady-state continuous culture tests. Biotechnol Bioeng 27:1229–1235Google Scholar
  52. Vitolo M, Vairo MLR, Borzani W (1988) Invertase activity of intact cells of Saccharomyces cerevisiae growing on sugarcane molasses. II. Unsteady-state continuous culture tests. Biotechnol Bioeng 30:9–14Google Scholar
  53. Vuuren HJJ van, Meyer L (1982) Production of ethanol from sugarcane molasses by Zymomonas mobilis. Biotechnol Lett 4:253–256Google Scholar
  54. Wang LH, Hsie MC, Chang CY, Kuo YC, Sang SL, Hsiao HD, Chen HC (1984) Improvement of ethanol productivity from cane molasses by a process with high yeast cell concentration. Symposium “Alternative Sources of Energy for Agriculture”, Taiwan Sugar Research Institute 153–157Google Scholar
  55. Wolniewicz E, Letourneau F, Villa P (1988) Compartment of S. cerevisiae in relation to ions Ca++ and Mg++ on beet molasses wort. Biotechnol Lett 10:355–360Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Monica B. Doelle
    • 1
  • Horst W. Doelle
    • 1
  1. 1.Department of MicrobiologyUniversity of QueenslandQueenslandAustralia

Personalised recommendations