Applied Microbiology and Biotechnology

, Volume 44, Issue 3–4, pp 377–385 | Cite as

High-level secretion of hirudin by Hansenula polymorpha —authentic processing of three different preprohirudins

  • U. Weydemann
  • P. Keup
  • M. Piontek
  • A. W. M. Strasser
  • J. Schweden
  • G. Gellissen
  • Z. A. Janowicz
Biotechnology Original Paper


A DNA sequence coding for a subtype of the hirudin variant HV1 was expressed in the methylotrophic yeast Hansenula polymorpha from a strongly inducible promoter element derived from a gene of the inducible promoter element derived from a gene of the methanol metabolism pathway. For secretion, the coding sequence was fused to the KEX2 recognition site of three different prepro segments engineered from the MFα1 gene of Saccharomyces cerevisiae, the gluco-amylase (GAM1) gene of Schwanniomyces occidentalis and the gene for a crustacean hyperglycemic hormone from the shore crab Carcinus maenas. In all three cases, correct processing of the precursor molecule and efficient secretion of the mature protein were observed. In fermentations on a 10-1 scale of a transformant strain harbouring a MFα1/hirudin-gene fusion yields in the range of grams per litre could be obtained. The majority of the secreted product was identified as the full-length 65-amino-acid hirudin. Only small amounts of a truncated 63-amino- acid product, frequently observed in S. cerevisiae-based expression systems, could be detected.


Fermentation Saccharomyces Cerevisiae Saccharomyces Recognition Site Mature Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achstetter T, Wolf, DH (1985) Hormone processing and membrane bound proteases in yeast. EMBO J 4:173–177Google Scholar
  2. Achstetter T, Ngyen-Juilleret M, Findeli A, Merkamm M, Lemoine Y (1992) A new signal peptide useful for secretion of heterologous proteins from yeast and its applications for synthesis of hirudin. Gene 110:25–31Google Scholar
  3. Bagdy D, Barabas E, Graf L (1973) Large scale preparation of hirudin. Thromb Res 2:229–238Google Scholar
  4. Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1521PubMedGoogle Scholar
  5. Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JA, Falkow S (1977) Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95–113Google Scholar
  6. Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS, Valenzuela P, Barr PJ (1984) α-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 81: 4612–4616Google Scholar
  7. Dodt J, Müller HP, Seemüller U, Chang JY (1984) The complete amino acid sequence of hirudin, a thrombin specific inhibitor. FEBS Lett 165:180–184Google Scholar
  8. Dohmen RJ, Strasser AWM, Dahlems U, Hollenberg CP (1990) Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95:111–121Google Scholar
  9. Dohmen RJ, Strasser AWM, Höhner CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692Google Scholar
  10. Garnier J, Osguthospe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120Google Scholar
  11. Gellissen G (1994) Heterologous gene expression in C1 compound-utilizing yeasts. In: Murooka Y, Imanaka T (eds) Recombinant microbes for industrial and agricultural applications, Dekker, New York, pp 787–796Google Scholar
  12. Gellissen G, Janowicz ZA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP, Strasser AWM (1991) Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology 9:291–295Google Scholar
  13. Gellissen G, Weydemann U, Strasser AWM, Piontek M, Janowicz ZA, Hollenberg CP (1992a) Progress in developing methylotrophic yeasts as expression systems. Trends Biotechnol 10:413–417CrossRefPubMedGoogle Scholar
  14. Gellissen G, Janowicz ZA, Weydemann U, Melber K, Strasser AWM, Hollenberg CP (1992b) High-level expression of foreign genes in Hansenula polymorpha. Biotechnol Adv 10:179–189Google Scholar
  15. Gellissen G, Melber K, Janowicz ZA, Dahlems U, Weydemann U, Piontek M, Strasser AWM, Hollenberg CP (1992c) Heterologous protein production in yeasts. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 62:79–93Google Scholar
  16. Gellissen G, Hollenberg CP, Janowicz ZA (1994) Gene expression in methylotrophic yeasts. In: Smith A (ed) Gene expression in recombinant microorganisms, Dekker, New York, pp 195–239Google Scholar
  17. George-Nascimento C, Gyenes A, Halloran SM, Merryweather JP, Steimer KS, Masiarz FR, Randolph A (1988) Characterization of recombinant human epidermal growth factor produced in yeast. Biochemistry 27:797–802Google Scholar
  18. Griesbach U, Stürzebecher J, Markwardt F (1985) Assay of hirudin in plasma using a chromogenic thrombin substrate. Thromb Res 37:347–350Google Scholar
  19. Hadfield C, Raina KK, Shashi-Menon K, Mount RC (1993) The expression and performance of cloned genes in yeasts. Mycol Res 97:897–944Google Scholar
  20. Harvey RP, Degryse E, Stefani L, Schamber F, Cazenave JP, Courtney M, Tolstoshev P, Lecocq JP (1986) Cloning and expression of a cDNA coding for the anticoagulant hirudin from the blood-sucking leech, Hirudo medicinalis. Proc Natl Acad Sci USA 83:1084–1088Google Scholar
  21. Heijne G von (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683–4690PubMedGoogle Scholar
  22. Heim J, Takabayashi K, Meyhack B, Märki W, Pohlig G (1994) C-terminal proteolytic degradation of recombinant desulfatohirudin and its mutants in the yeast Saccharomyces cerevisiae. Eur J Biochem 226:341–353Google Scholar
  23. Hinnen A, Buxton F, Chaudhuri B, Heim J, Hottiger T, Meyhack B, Pohlig G (1994) Gene expression in recombinant yeast. In: Smith A (ed) Gene expression in recombinant microorganisms, Dekker, New York, pp 121–193Google Scholar
  24. Hoffmann KJ, Schultz LD (1991) Mutations of the alpha galactosidase signal peptide which greatly enhance secretion of the heterologous proteins by yeast. Gene 94:105–111Google Scholar
  25. Johnson PH, Sze P, Winant R, Payne PW, Lazar JB (1989) Biochemistry and genetic engineering of hirudin. Semin Thromb Hemost 15:302–315Google Scholar
  26. Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysine-arginine endopeptidase required for processing of yeast prepro-α-factor. Cell 37:1075–1083Google Scholar
  27. Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedGoogle Scholar
  28. Ledeboer AM, Edens L, Maat J, Visser C, Bos J, Verrips CT, Janowicz, ZA, Eckart M, Roggenkamp RO, Hollenberg CP (1985) Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res 13:3063–3082Google Scholar
  29. Loison G, Findelli A, Bernard S, Nguyen-Juilleret M, Marquet M, Riehl-Bellon N, Carvallo D, Guerra-Santos L, Brown SW, Courtney M, Roitsch C, Lemoine Y (1988) Expression and secretion of biologically active leech hirudin. Biotechnology 6:72–77Google Scholar
  30. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NYGoogle Scholar
  31. Märki WE, Wallis RB (1990) The anticoagulant and antithrombotic properties of hirudins. Thromb Haemost 64:344–348Google Scholar
  32. Märki WE, Grossenbacher H, Grütter MG, Liersch MH, Meyhack B, Heim J. (1991) Recombinant hirudin: Genetic engineering and structure analysis. Semin. Thromb Hemost 17:88–93Google Scholar
  33. Markwardt F (1991a) Hirudin and derivatives as anticoagulant agents. Thromb Haemost 66:141–152Google Scholar
  34. Markwardt F (1991b) The comeback of hirudin as an antithrombotic agent. Semin Thromb Haemost 17:79–82Google Scholar
  35. Needleman SB (ed) (1978) Protein sequence determination Springer, BerlinGoogle Scholar
  36. Novick P, Ferro S, Schekman R (1981) Order of events in the yeast secretory pathway. Cell 25:205–215Google Scholar
  37. Roggenkamp RO, Hansen H, Eckart M, Janowicz ZA, Hollenberg CP (1986) Transformation of the methylotrophic yeast Hansenula polymorpha by autonomous replication and integration vectors. Mol Gen Genet 202:302–308Google Scholar
  38. Schekman R (1985) Protein localization and membrane traffic in yeast. Annu Rev Cell Biol 1:115–143Google Scholar
  39. Seemüller U, Dodt J, Fink E, Fritz H (1986) Proteinase inhibitors of the leech Hirudo medicinalis (hirudins, bdellins, eglins). In: Barrett AJ, Salvesen G (eds) Proteases. Elsevier, Amsterdam, pp 337–359Google Scholar
  40. Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Press, Cold Spring Harbor, NYGoogle Scholar
  41. Stevens TH, Rothman JH, Payne GS, Schekman R (1986) Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y. J Cell Biol 102:1551–1557PubMedGoogle Scholar
  42. Tebbe CC, Vahjen W, Munch JC, Feldmann SD, Ney U, Sahm H, Gellissen G, Amore R, Hollenberg CP (1994a) Verbundprojekt Sicherheitsforschung Gentechnik. Teil 1. Überleben der Untersuchungsstämme und Persistenz ihrer rekombinanten DNA. Bioengineering 6/94:14–21Google Scholar
  43. Tebbe CC, Vahjen W, Munch JC, Meier B, Gellissen G, Feldmann SD, Sahm H, Amore R, Hollenberg CP, Blum S, Wackernagel W (1994b) Verbundprojekt Sicherheitsforschung Gentechnik. Teil 2. Mesokosmenuntersuchungen und Einfluß der Habitat-bedingungen auf die Expression, Überdauerung und Übertragung des Aprotinin-Gens. Bioengineering 6/94:22–26Google Scholar
  44. Vedvick T, Buckholz RG, Engel M, Urcan M, Kinney J, Provow S, Siegel RS, Thill GP (1991) High level secretion of biologically active aprotinin from the yeast Pichia pastoris. J Ind Microbiol 7:197–202Google Scholar
  45. Vlasuk GP, Bencen GH, Scarborough RM, Tsai PK, Whang JL, Maak T, Camargo MJF, Hirsher SW, Abraham JA (1986) Expression and secretion of biologically active human natriuretic peptide in Saccharomyces cerevisiae. J Biol Chem 261: 4789–4796Google Scholar
  46. Walsmann P (1991) Isolation and characterization of hirudin from Hirudo medicinalis. Semin Thromb Hemost 17:83–87Google Scholar
  47. Waters MG, Evans EA, Blobel G (1988) Prepro α-factor has a cleavable signal sequence. J Biol Chem 263:6209–6214Google Scholar
  48. Weidemann W, Gromoll J, Keller R (1989) Cloning and sequence analysis of cDNA for precursor of a crustacean hyperglycemic hormone. FEBS Lett 257:31–34Google Scholar
  49. Weydemann U, Keup P, Gellissen G, Janowicz ZA (1995) Ein industrielles Herstellungsverfahren von rekombinantem Hirudin in der methylotrophen Hefe Hansenula polymorpha. Bioscope 3:8–15Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • U. Weydemann
    • 1
  • P. Keup
    • 1
  • M. Piontek
    • 1
  • A. W. M. Strasser
    • 1
  • J. Schweden
    • 2
  • G. Gellissen
    • 1
  • Z. A. Janowicz
    • 1
  1. 1.Rhein Biotech GmbHDüsseldorfGermany
  2. 2.BASF AGLudwigshafenGermany

Personalised recommendations