Journal of Mathematical Biology

, Volume 31, Issue 8, pp 853–878

A mathematical model for the force and energetics in competitive running

  • Horst Behncke


A simple mathematical model for competitive running is developed. This model contains the force and energy reserves as key variables and it describes their relationship and dynamics. It is made up of three submodels for the biomechanics of running, the energetics and the optimization. The model for the energetics is an extension of the hydraulic model of Margaria and Morton. The key geometric parameters of this piecewise linear, three compartment model are determined on the basis of well known physiological facts and data.

Key words

Athletics Running Force Energy Hydraulic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ballreich, R.: Weg and Zeitmerkmale von Sprintbewegungen. Berlin: Bartels and Warnitz Vlg 1969Google Scholar
  2. 2.
    Baumann, W.: Kinematic and dynamic characteristics of the sprint start. Biomechanics VB. (Int. Ser. Biomech., vol. Vb, pp. 194–199) Baltimore: University Park Press 1973Google Scholar
  3. 3.
    Behncke, H.: Optimization models for the force and energy in competitive sports. Math. Meth. Appl. Sci. 9, 298–311 (1987)Google Scholar
  4. 4.
    Cavagna, G. A., Kaneko, M.: Mechanical efficiency in level walking and running. J. Phys. 268, 467–481 (1977)Google Scholar
  5. 5.
    Davies, C. T. M.: Wind resistance and assistance in running. Med. Sport 13, 199–212 (1981)Google Scholar
  6. 6.
    di Prampero, P. E., Pifiera Limas, F., Sassi, G.: Maximal muscular power, aerobic and anaerobic in 116 athletes performing at the 19th Olympic Games in Mexico. Ergonomics 13, 665–674 (1970)Google Scholar
  7. 7.
    Filipov, A. F.: On certain questions in optimal control. Siam J. Control 2, 76–84 (1962)Google Scholar
  8. 8.
    Fukunaga, T., Matsuo, A., Yuasa, K., Fujimatsu, H., Asahina, K.: Mechanical power output in running. Biomechanics VIb. (Int. Ser. Biomech., vol VIb) Baltimore: University Park Press 1978Google Scholar
  9. 9.
    Heck, H.: Laktat in der Leistungsdiagnostik. Schorndorf: Hoffmann 1990Google Scholar
  10. 10.
    Hirvonen, J., Rehunen, S., Rusko, H., Härkönen, M.: Breakdown of high energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur. J. Appl. Physiol. 56, 253–259 (1987)Google Scholar
  11. 11.
    Hellmann, W., Hettinger, T.: Sportmedizin - Arbeits- und Trainingsgrundlagen. Stuttgart New York: Schattauer 1980Google Scholar
  12. 12.
    Keller, J. B.: A theory of competitive running. Phys. Today 26, 43–47 (1973)Google Scholar
  13. 13.
    Kindermann, W., Keul, J.: Anaerobe Energiebereitstellung im Hochleistungssport. Schorndorf: Hoffmann 1977Google Scholar
  14. 14.
    Knuttgen, H. G., Vogel, J. A., Poortmans, J.: Biochemistry of Exercise. In: Proc. of the Fifth Intern. Symposium on the Biochemistry of Exercise, Boston 1982. Champaign, IL: Human Kinetics Publ. Inc. 1982Google Scholar
  15. 15.
    Mader, A.: Eine Theorie zur Berechnung der Dynamik und des steady state von Phosphorylierungszustand und Stoffwechselaktivität der Muskelzelle als Folge des Energiebedarfs. Habilitationsschrift -Deutsche Sporthochschule Köln (1984)Google Scholar
  16. 16.
    Margaria, R.: Biomechanics and energetics of muscular exercises. Oxford: Clarendon Press 1976Google Scholar
  17. 17.
    McGilvery, R. W., Murray, T.: Calculated equilibria of phosphocreatine and adenosin phosphates during utilization of high energy phosphate by muscle. J. Biol. Chem. 18, 5845–5850 (1974)Google Scholar
  18. 18.
    Morton, R. H.: A three component model of human bioenergetics. J. Math. Biol. 24, 451–466 (1986)Google Scholar
  19. 19.
    Morton, R. H.: Modelling human power and endurance. J. Math. Biol. 28, 49–64 (1990)Google Scholar
  20. 20.
    Morton, R. H.: Model theory equations for maximal power and endurance. (Preprint 1988)Google Scholar
  21. 21.
    Neustadt, L.: Optimization. Princeton: Princeton University Press 1976Google Scholar
  22. 22.
    Taylor, C. R., Schmidt Nielsen, K., Raab, J. L.: Scaling of energetic cost of running to body size in mammals. Am. J. Physiol. 219, 1104–1107 (1970)Google Scholar
  23. 23.
    Ward-Smith, A. J.: A mathematical theory of running, based on the first law of thermodynamics and its application to the performance of world class athletes. J. Biomech. 18, 337–349 (1985)Google Scholar
  24. 24.
    Zaciorski, V. M.: Biomechanische Grundlagen der Ausdauer. Berlin: Sportverlag 1987Google Scholar

Copyright information

© Springer-Verlag 1993 1993

Authors and Affiliations

  • Horst Behncke
    • 1
  1. 1.Fachbereich MathematikUniversität OsnabrückOsnabrückGermany

Personalised recommendations