Advertisement

Journal of Mathematical Biology

, Volume 29, Issue 4, pp 315–338 | Cite as

The effects of spatial heterogeneity in population dynamics

  • R. S. Cantrell
  • C. Cosner
Article

Abstract

The dynamics of a population inhabiting a heterogeneous environment are modelled by a diffusive logistic equation with spatially varying growth rate. The overall suitability of an environment is characterized by the principal eigenvalue of the corresponding linearized equation. The dependence of the eigenvalue on the spatial arrangement of regions of favorable and unfavorable habitat and on boundary conditions is analyzed in a number of cases.

Key words

Population dynamics Spatial heterogeneity Reaction-diffusion equations Eigenvalue problems Environmental quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, K. J., Lin, C. C.: On the existence of positive eigenfunctions for an eigenvalue with an indefinite weight function. J. Math. Anal. Appl. 75, 112–120 (1980)Google Scholar
  2. 2.
    Cantrell, R. S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proc. Roy. Soc. Edinb. 112, 293–318 (1989)Google Scholar
  3. 3.
    Figueiredo, de D. G.: Positive solutions of semilinear elliptic problems. In: Figueiredo, D. G. de, Honig, C. S. (eds.) (Lect. Notes Maths., vol. 957, pp. 34–88). Berlin Heidelberg New York: Springer 1982Google Scholar
  4. 4.
    Levin, S.: Population models and community structure in heterogeneous environments. In: Hallam, T. G., Levin, S. (eds.) Mathematical ecology (Lect. Notes Biomath., vol. 17). Berlin Heidelberg New York: Springer 1986Google Scholar
  5. 5.
    Ludwig, D., Aronson, D. G., Weinberger, H. F.: Spatial patterning of the spruce budworm. J. Math. Biology 8, 217–258 (1979)Google Scholar
  6. 6.
    MacArthur, R. H., Wilson, E. O.: The theory of island biogeography. Princeton: Princeton University Press, 1967Google Scholar
  7. 7.
    Manes, A., Micheletti, A. M.: Un' estensione della teoria variazionale classica degli autovalori per operatori ellitici del secondo ordine. Boll. U.M.I. 7, 285–301 (1973)Google Scholar
  8. 8.
    Murray, J. D., Sperb, R. P.: Minimum domains for spatial patterns in a class of reaction-diffusion equations. J. Math. Biology 18, 169–184 (1983)Google Scholar
  9. 9.
    Newmark, W. D.: Species-area relationship and its determinants for mammals in western North American national parks. Biol. J. Linnean Soc. 28, 83–98 (1986)Google Scholar
  10. 10.
    Okubo, A.: Diffusion and ecological problems: mathematical models. Berlin Heidelberg New York: Springer 1980Google Scholar
  11. 11.
    Seno, H.: Effect of a singular patch on population persistence in a multi-patch system. Ecol. Modell. 43, 271–286 (1988)Google Scholar
  12. 12.
    Skellam, J. G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)Google Scholar
  13. 13.
    Soule, M. E., Wilcox, B. A. (eds.): Conservation biology: an evolutionary-ecological perspective. Sunderland, Mass.: Sinauer 1980Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • R. S. Cantrell
    • 1
  • C. Cosner
    • 1
  1. 1.Department of Mathematics and Computer ScienceUniversity of MiamiCoral GablesUSA

Personalised recommendations