Advertisement

Immunogenetics

, Volume 40, Issue 3, pp 238–241 | Cite as

Peptide motifs of HLA-A1,-A11,-A31, and-A33 molecules

  • Kirsten Falk
  • Olaf Rötzschke
  • Masafumi Takiguchi
  • Blazenka Grahovac
  • Volker Gnau
  • Stefan Stevanović
  • Günther Jung
  • Hans-George Rammensee
Peptide Motif Register

Keywords

Peptide Peptide Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, J., Payne, J. A., Shigekawa, B., Frelinger, J. A., and Cresswell, P. The transport of class I major histocompatibility complex antigens is determined by sequences in the α1 and α2 protein domains. Immunogenetics 31: 169–178, 1990Google Scholar
  2. Barnstable, C. J., Bodmer, W. F., Brown, G., Galfre, G., Milstein, C., Williams, A. F., and Ziegler, A. Production of monoclonal antibodies to group A erythrocytes, HLA and other human cell surface antigens-new tools for genetic analysis. Cell 14: 9–20, 1978Google Scholar
  3. Bjorkman, P. J. and Parham, P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 59: 253–288, 1990Google Scholar
  4. Di Brino, M., Parker, K. C., Shiloach,J., Knierman, M., Lukszo, J., Turner, R. V., Biddison, W. E., and Coligan, J. E. Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. Proc Natl Acad Sci USA 90: 1508–1512, 1993 aGoogle Scholar
  5. Di Brino, M., Tsuchida, T., Turner, R. V., Parker, K. C., Coligan, J. E., and Biddison, W. E. HLA-A1 and HLA-A3 T-cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 151: 5930–5935, 1993 bGoogle Scholar
  6. Di Brino, M., Parker, K. C., Shiloach, J., Turner, R. V., Tsuchida, T., Garfield, M., Biddison, W. E., and Coligan, J. E. Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. J Immunol 152: 620–631, 1994Google Scholar
  7. Falk, K., Rötzschke, O., Stevanović, S., Jung, G., and Rammensee, H.-G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351: 290–296, 1991Google Scholar
  8. Falk, K., Rötzschke, O., Grahovac, B., Schendel, D., Stevanović, S., Jung, G., and Rammensee, H. G. Peptide motifs of HLA-B35 and HLA-B37 molecules. Immunogenetics 38: 161–162, 1993 aGoogle Scholar
  9. Falk, K.,and Rötzschke, O. Consensus motifs and peptide ligands of MHC class I molecules. Sem Immunol 5: 81–94, 1993Google Scholar
  10. Falk, K., Rötzschke, O., Grahovac, B., Schendel, D., Stevanović, S., Gnau, V., Jung, G., Strominger, J. L., and Rammensee, H.-G. Allele-specific peptide ligand motifs of HLA-C molecules. Proc Natl Acad Sci USA 90: 12005–12009, 1993 bGoogle Scholar
  11. Gavioli, R., Kurilla, M. G., De Campos-Lima, P. O., Wallace, L. E., Dolcetti, R., Murray, R. J., Rickinson, A. B., and Masucci, M. G. Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenecities in the Epstein-Barr virus-encoded nuclear antigen 4. J Virol 67: 1572–1578, 1993Google Scholar
  12. Guo, H. C., Jardetzky, T. S., Garrett, T. P. J., Lane, W. S., Strominger, J. L., and Wiley, D. C. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 360: 364–366, 1992Google Scholar
  13. Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R., and Wiley, D. C. Identification of self peptides bound to purified HLA-B27. Nature 353: 326–329, 1991Google Scholar
  14. Kato, N., Kikuchi, A., Kano, K., Egawa, K., and Takiguchi, M. Molecular analysis of a novel HLA-A33 subtype associated with HLA-B44. Tissue Antigens 41: 211–213, 1993Google Scholar
  15. Loveland, B., Wang, C. R., Yonekawa, H., Hermel, E., and Fischer Lindahl, K. Maternally transmitted histocompatibility antigen of mice: a hydrophobic peptide of a mitochondrially encoded protein. Cell 60: 971–980, 1990Google Scholar
  16. Madden, D. R., Gorga, J. C., Strominger, J. L., and Wiley, D. C. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 353: 321–325, 1991Google Scholar
  17. Maier, R., Falk, K., Rötzschke, O., Maier, B., Gnau, V., Stevanović, S., Jung, G., Rammensee, H.-G., Meyerhans, A. Peptide motifs of HLA-A3,-A24, and B7 molecules as determined by pool sequencing. Immunogenetics, in pressGoogle Scholar
  18. Malcherek, G., Falk, K., Rötzschke, O., Rammensee, H.-G., Stevanović, S., Gnau, V., Jung, G., and Melms, A. Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. Int Immunol 5: 1229–1237, 1993Google Scholar
  19. Matsamura, M., Fremont, D. H., Peterson, P., and Wilson, I. A. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257: 927–934, 1992Google Scholar
  20. Missale, G., Redeker, A., Person, J., Fowler, P., Guilhot, S., Schlicht, H. J., Ferrari, C., and Chisari, F. V. HLA-A31-and HLA-Aw68-restricted cytotoxic T cell responses to a single hepatitis B virus nucleocapsid epitope during acute viral hepatitis. J Exp Med 177: 751–762, 1994Google Scholar
  21. Parham, P. and Bodmer, W. F. Monoclonal antibody to a human histocompatibility alloantigen, HLA-A2. Nature 276: 397–399, 1978Google Scholar
  22. Rötzschke, O., Falk, K., Stevanović, S., Gnau, V., Jung, G., and Rammensee, H.-G. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B*2705 peptide motifs. Immunogenetics 39: 74–77, 1994Google Scholar
  23. Saper, M. A., Bjorkman, P. J., and Wiley, D. C. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6A resolution.. J Mol Biol 219: 277–319, 1991Google Scholar
  24. Silver, M. L., Guo, H. C., Strominger, J. L., and Wiley, D. C. Atomic structure of a human MHC molecule presenting an influenza virus peptide. Nature 360: 367–369, 1992Google Scholar
  25. Sutton, J., Rowland-Jones, S., Rosenberg, W., Nixon, D., Gotch, F., Gao, X. M., Murray, N., Spoonas, A., Driscoll, P., Smith, M., Willis, A., and McMichael, A. A sequence pattern for peptides presented to cytotoxic T-lymphocytes by HLA-B8 revelaed by analysis of epitopes and eluted peptides. Eur J Immunol 23: 447–453, 1993Google Scholar
  26. Udaka, K., Tsomides, T. J., Walden, P., Fukusen, N., and Eisen, H. N. A ubiquitous protein is the source of naturally occuring peptides that recognized by a CD8+ T-cell clone. Proc Natl Acad Sci USA 90: 11272–11276, 1993Google Scholar
  27. Van der Bruggen, P., Traversari, C., Chomez, P., Lurquin, C., Deplaen, E., Vandeneynde, B., Knuth, A., and Boon, T. A Gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254: 1643–1647, 1991Google Scholar
  28. Zemmour, J., Little, A. M., Schendel, D. J., and Parham, P. The HLA-A,B negative mutant-cell line CIR expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol 148: 1941–1948, 1992Google Scholar
  29. Zhang, Q.J., Gavioli, R., Klein, G., and Masucci, M. G. An HLA-A11-specific motif in nonamer peptides derived from viral and cellular proteins. Proc Natl Acad Sci USA 90: 2217–2221, 1993Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Kirsten Falk
    • 1
  • Olaf Rötzschke
    • 1
  • Masafumi Takiguchi
    • 2
  • Blazenka Grahovac
    • 3
  • Volker Gnau
    • 4
  • Stefan Stevanović
    • 5
  • Günther Jung
    • 4
  • Hans-George Rammensee
    • 5
  1. 1.Depa. of Biochemistry and Molecular BiologyHarvard UniversityCambridgeUSA
  2. 2.The Institute of Medical Science, Dept. of Tumor BiologyThe University of TokyoTokyoJapan
  3. 3.Institute of Clinical Laboratory Diagnostics, Clinical CenterZagreb University School of MedicineZagrebCroatia
  4. 4.Institut für Organische ChemieUniversität TübingenTübingenGermany
  5. 5.Abteilung Tumorvirus-Immunologie 0620Deutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations