Advertisement

Immunogenetics

, Volume 40, Issue 3, pp 192–198 | Cite as

The peptide binding specificity of HLA-B27 subtypes

  • Nobuyuki Tanigaki
  • Doriana Fruci
  • Eliana Vigneti
  • Giuseppe Starace
  • Paolo Rovero
  • Marco Londei
  • Richard H. Butler
  • Roberto Tosi
Original Paper

Abstract

Five HLA-B27 subtypes, B*2701, B*2703, B*2704, B*2705, and B*2706, were tested for direct binding with twenty-six synthetic nonapeptides carrying the primary anchor residue motifs (combination of amino residues at positions 2 and 9) relevant to B*2705. The peptide sequences were derived from human HSP89α, P53 and MBP. The alpha chains were immunospecifically isolated from LH (B*2701), CH (B*2703), WE1 (B*2704), BTB (B*2705), and LIE (B*2706) cells and their peptide binding was measured by the HLA class I alpha chain refolding assay. The data obtained indicated that the B27 subtypes tested can bind a common set of peptides carrying several different anchor residue motifs. The motifs, R-K and R-R, reported for B*2705 and a new motif H-R were accepted by B*2703, B*2704, and B*2706, but not by B*2701. However, other motifs, including known B*2702 and/or B*2705 motifs, R-H, R-L, R-A, and R-F, and a new motif found here, R-G, were apparently accepted by all B27 subtypes tested. The observed cross-peptide binding in the B27 subgroup is compatible with the so-called arthritogenic peptide hypothesis in the pathogenesis of ankylosing spondylitis.

Keywords

Peptide Spondylitis Peptide Binding Direct Binding Alpha Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin, R. and Parham, P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunology Today 11: 137–142, 1990Google Scholar
  2. Benjamin, R. J., Madrigal, J. A., and Parham, P. Peptide binding to empty HLA-B27 molecules of viable human cells. Nature 351: 74–77, 1991Google Scholar
  3. Breur-Vriesendorp, B. S., Dekker-Saeys, A. J., and Ivanyi, P. Distribution of HLA-B27 subtypes in patients with ankylosing spondilitis: t the disease is associated with a common determinant of the various B27 molecules. Ann Rheum Dis 46: 353–356, 1987Google Scholar
  4. Brewerton, D. A., Caffrey, M., Hart, F. D., James, D. C. O., Nicholls, A., and Sturrock, R. D. Ankylosing spondylitis and HL-A27. Lancet i: 904–907, 1973Google Scholar
  5. Brooks, J. M., Murray, R. J., Thomas, W. A., Kurilla, M. G., and Rickinson, A. B. Different HLA-B27 subtypes present the same immunodominant Epstein-Bar virus peptide. J Exp Med 178: 879–887, 1993Google Scholar
  6. Buxton, S. E., Benjamin, R. J., Clayberger, C., Parham, P., and Krensky, A. M. Anchoring pockets in human histocompatibility complex leukocyte antigen (HLA) class I molecules: analysis of the conserved B (“45”) pocket of HLA-B27. J Exp Med 175: 809–820, 1992Google Scholar
  7. Choo, S. Y., Fan, L.-A., and Hansen, J. A. A novel HLA-B27 allele maps B27 allospecificity to the region around position 70 in the a1 domain. J Immunol 147: 174–180, 1991Google Scholar
  8. Fruci, D. P., Rovero, P., Butler, R. H., Sorrentino, R., Tosi, R., and Tanigaki, N. HLA class I binding of synthetic nonamer peptides carrying major anchor residue motifs of HLA-B27 (B*2705)-binding peptides. Immunogenetics 38: 41–46, 1993Google Scholar
  9. Hermann, E., Yu, D. T. Y., Meyer zum Buschenfelde, K.-H., and Fleischer, B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 342: 646–650, 1993Google Scholar
  10. Hill, A. V. S., Allsopp, C. E. M., Kwiatkowski, D., Anstey, N. M., Greenwood, B. M., and McMichael, A. J. HLA class I typying by PCR: HLA-B27 and an African B27 subtype. Lancet 337: 640–642, 1991Google Scholar
  11. Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R., and Wiley, D. C. Identification of self-peptides bound to purified HLA-B27. Nature 353: 326–329, 1991Google Scholar
  12. López de Castro, J. A. HLA-B27 and HLA-A2 subtypes: structure, evolution and function. Immunol Today 10: 239–246, 1989Google Scholar
  13. López, D., Rojo, S., Calvo, V., and López de Castro, J. A. Peptide-presenting similarities among functionally distant HLA-B27 subtypes. J Immunol 148: 996–1002, 1992Google Scholar
  14. MacLean, L. HLA-B27 subtypes: implications for the spondyoarthropathies. Ann Rheum Dis 51: 929–931, 1992Google Scholar
  15. Madden, D. R., Gorga, J. C., Strominger, J. L., and Wiley, D. C. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformatin. Nature 353: 321–325, 1991Google Scholar
  16. Madden, D. R., Gorga, J. C., Strominger, J. L., and Wiley, D. C. The three dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC. Cell 70: 1035–1048, 1992Google Scholar
  17. Madden, D. R., Garboczi, D. N., and Wiley, D. C. The antigenic identity of peptide-MHC complexes: a comparision of the conformations of five viral peptides presented by HLA-A2. Cell 75: 693–708, 1993Google Scholar
  18. Milford, E. L., Kennedy, L. J., Yang, S. Y., Dupont, B., Lalouel, J.-M., and Yunis, E. J. Serological characterization of the reference panel of B-lymphoblastoid cell lines for factors of the HLA system. In B. Dupont (ed.): Immunobiology of HLA (Vol 1) Histocompatibility Testing 1987, pp. 19–38, Springer, New York, 1989Google Scholar
  19. Pazmany, L., Rowland-Jones, S., Huet, S., Hill, A., Sutton, J., Murray, R., Brooks, J., and McMichael, A. Genetic modulation of antigen presentation by HLA-B27 molecules. J Exp Med 175: 361–369, 1992Google Scholar
  20. Rojo, S., Garcia, F., Villadangos, J. A., and López de Castro, J. A. Changes in the repertoire of peptides bound to HLA-B27 subtypes and to site-specific mutants inside and outside pocket B. J Exp Med 177: 613–620, 1993Google Scholar
  21. Rötzschke, O., Falk, K., Stevanovic, S., Gnau, V., Jung, G., and Rammensee, H.-G. Dominant aromatic/aliphatic C-terminal anchor in HLA-B*2702 and B* 705 peptide motifs. Immunogenetics 39: 74–77, 1994Google Scholar
  22. Rovero, P., Riganelli, D., Fruci, D., Vigano, S., Pegoraro, S., Revoltella, R., Greco, G., Butler, R., Clementi, S., and Tanigaki, N. The importance of secondary anchor residue motifs of HLA class I proteins: a chemometric approach. Mol Immunol, in pressGoogle Scholar
  23. Ruppert, J., Sidney, J., Celis, E., Kubo, R. T., Grey, H. M., and Sette, A. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell 74: 929–937, 1993Google Scholar
  24. Schlosstein, L., Terasaki, P. I., Bluestone, R., and Pearson, C. M. High association of HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 288: 704–706, 1973Google Scholar
  25. Tanigaki, N., Fruci, D., Chersi, A., and Butler, R. H. Unfolded HLA class I alpha chains and their use in an assay of HLA class I-peptide binding. Hum Immunol 36: 119–127, 1993Google Scholar
  26. WHO Nomenclature Committee for factors of the HLA system. Nomenclature for factors of the HLA system, 1987. Immunogenetics 28: 391–398, 1988Google Scholar
  27. WHO Nomenclature Committee for factors of the HLA system. Nomenclature for factors of the HLA system, 1991. Immunogenetics 36: 135–148, 1992Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Nobuyuki Tanigaki
    • 4
  • Doriana Fruci
    • 1
  • Eliana Vigneti
    • 1
  • Giuseppe Starace
    • 5
  • Paolo Rovero
    • 2
  • Marco Londei
    • 3
  • Richard H. Butler
    • 1
  • Roberto Tosi
    • 1
  1. 1.Istituto di Biologia Cellulare, CNRRomaItaly
  2. 2.Istituto di Mutagenesi e Differenziamento, CNRPisaItaly
  3. 3.Kennedy Institute of RheumatologyLondonUK
  4. 4.Roswell Park Cancer InstituteNYBuffaloUSA
  5. 5.Istituto di Medicina Sperimentale, CNRRomaItaly

Personalised recommendations