Behavioral Ecology and Sociobiology

, Volume 35, Issue 1, pp 63–73 | Cite as

Pigeon homing: the effect of a clock-shift is often smaller than predicted

  • Roswitha Wiltschko
  • Richard Kumpfmüller
  • Renate Muth
  • Wolfgang Wiltschko


This analysis is based on 103 releases with 6-h clock-shifted pigeons of various ages and experiences. Resetting the internal clock normally leads to a significant change in initial orientation; however, in half of the cases, the induced deflections are significantly smaller than predicted by the sun compass hypothesis. The relative size of the deflections decreases with increasing age and experience (Fig. 3). Only young pigeons with limited experience respond as expected, while old birds show deflections which are, on the average, only slightly more than half of the predicted size, except at extremely familiar sites (Table 2). There is no difference between fast and slow shifts (Fig. 4). It is not possible to clearly specify under what circumstances smaller deflections occur; previous clock-shifts (Fig. 5), familiarity with the release site (Table 4) and duration of the shifting procedure (Table 5) do not seem to be the reasons. Clock-shifting also tends to decrease the vector lengths and has a marked effect on homing performance (Table 7). Nevertheless, considerable numbers of clock-shifted birds return on the day of release before their internal clock has begun to be reset back to normal. The general role of the sun compass in bird orientation is considered and theoretical implications of our findings are discussed in view of the ‘map and compass’-model and the possibility that an alternative, non-time-compensating compass is used in parallel with the sun compass.

Key words

Pigeon homing Clock shift Map and compass model Sun compass Orientation Navigation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander J, Keeton WT (1974) Clock-shifting effect on initial orientation of pigeons. Auk 91:370–374Google Scholar
  2. Batschelet E (1981) Circular statistics in biology. Academic Press, London New YorkGoogle Scholar
  3. Benvenuti S, Fiaschi V, Fiore L, Papi F (1973) Homing performances of inexperienced and directionally trained pigeons subjected to olfactory nerve section. J Comp Physiol 83:81–92Google Scholar
  4. Foa A, Albonetti E (1980) Does familiarity with the release site influence the initial orientation of homing pigeons? Experiments with clock-shifted birds. Z Tierpsychol 54:327–338Google Scholar
  5. Frisch K von (1950) Die Sonne als Kompaß im Leben der Bienen. Experientia 6:210–221Google Scholar
  6. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Füller E, Kowalski U, Wiltschko R (1983) Orientation of homing pigeons: Compass orientation vs piloting by familiar landmarks. J Comp Physiol 153:55–58Google Scholar
  8. Graue LC (1963) The effect of phase shifts in the day-night cycle on pigeon homing at distances of less than one mile. Ohio J Sci 63:214–217Google Scholar
  9. Hartwick RF, Foa A, Papi F (1977) The effect of olfactory deprivation by nasal tubes upon homing behaviour in pigeons. Behav Ecol Sociobiol 2:81–89Google Scholar
  10. Keeton WT (1969) Orientation by pigeons: Is the sun necessary? Science 165:922–928Google Scholar
  11. Keeton WT (1973) Release-site bias as a possible guide to the “map” component in pigeon homing. J Comp Physiol 86:1–16Google Scholar
  12. Keeton WT (1974) The orientational and navigational basis of homing in birds. In: Lehrman DS, Hinde RA, Shaw E (eds) Advances in the study of behavior, vol 5. Academic Press, New York San Francisco London, pp 47–132Google Scholar
  13. Keeton WT (1979) Avian orientation and navigation: a brief overview. Br Birds 72:451–470Google Scholar
  14. Kramer G (1950) Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften 37:377–378Google Scholar
  15. Kramer G (1953) Wird die Sonnenhöhe bei der Heimfindeorientierung verwendet? J Ornithol 94:201–219Google Scholar
  16. Kramer G (1957) Experiments on bird orientation and their interpretation. Ibis 99:196–227Google Scholar
  17. Kramer G (1959) Recent experiments on bird orientation. Ibis 101:399–416Google Scholar
  18. Kumpfmüller R, Wiltschko R (1993) Orientierung von Brieftauben: Lernen und Wiederlernen des Sonnenkompaß. Verh Dtsch Zool Ges 86, 259Google Scholar
  19. Matthews GVT (1953) Sun navigation in homing pigeons. J Exp Biol 30:243–267Google Scholar
  20. Neuss M, Wallraff HG (1988) Orientation of displaced homing pigeons with shifted circadian clocks: Prediction vs observation. Naturwissenschaften 75:363–365Google Scholar
  21. Quire DB (1982) Infrasound: a potential cue for homing pigeons. In: Papi F, Wallraff HG (eds) Avian Navigation. Springer, Berlin Heidelberg New York, pp 373–376Google Scholar
  22. Schmidt-Koenig K (1958a) Der Einfluß experimentell veränderter Zeiteinschätzung auf das Heimfindevermögen von Brieftauben. Naturwissenschaften 45:47Google Scholar
  23. Schmidt-Koenig K (1958b) Experimentelle Einflußnahme auf die 24-Stundenperiodik bei Brieftauben und deren Auswirkungen unter besonderer Berücksichtigung des Heimfindevermögens. Z Tierpsychol 15:301–331Google Scholar
  24. Schmidt-Koenig K (1961) Die Sonne als Kompaß im Heim-Orientierungssystem der Brieftauben. Z Tierpsychol 18:221–244Google Scholar
  25. Schmidt-Koenig K (1965a) Current problems in bird orientation. In: Lehrman DS, Hinde RA, Shaw E (eds) Advances in the study of behavior. Academic Press, New York London, pp 217–278Google Scholar
  26. Schmidt-Koenig K (1965b) Über den zeitlichen Ablauf der Anfangsorientierung bei Brieftauben. Verh Dtsch Zool Ges 28:107–111Google Scholar
  27. Schmidt-Koenig K (1972) New experiments on the effect of clock shifts on homing in pigeons. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Animal orientaion and navigation (NASA SP-262). US Government Print Office, Washington DC, pp 275–282Google Scholar
  28. Schmidt-Koenig K (1979) Avian orientation and navigation. Academic Press, London New York San FranciscoGoogle Scholar
  29. Schmidt-Koenig K, Keeton WT (1977) Sun compass utilization by pigeons wearing frosted contact lenses. Auk 94:143–145Google Scholar
  30. Schmidt-Koenig K, Ganzhorn JU, Ranvaud R (1991a) The sun compass. In: Berthold P (ed) Orientation in birds. Birkhäuser, Basel, pp 1–15Google Scholar
  31. Schmidt-Koenig K, Ranvaud R, Ganzhorn JU, Gasparotto OC (1991b) Retardation of homing pigeons'ephemerides? Naturwissenschaften 78, 330–331Google Scholar
  32. Schöps M (1991) Der Einfluß von Infraschall auf das Orientierungssystem von Brieftauben. Verh Dtsch Zool Ges 84:361–362Google Scholar
  33. Wallraff HG (1966) Über die Anfangsorientierung von Brieftauben unter geschlossener Wolkendecke. J Ornithol 107:326–336Google Scholar
  34. Wallraff HG (1974) Das Navigationssystem der Vögel. Ein theoretischer Beitrag zur Analyse ungeklärter Orientierungsleistungen. Schriftenreihe: Kybernetik. Oldenbourg, München WienGoogle Scholar
  35. Wiltschko R (1980) Die Sonnenorientierung der Vögel. I. Die Rolle der Sonne im Orientierungssystem und die Funktionsweise des Sonnenkompaß. J Ornithol 121:121–143Google Scholar
  36. Wiltschko R (1981) Die Sonnenorientierung der Vögel. II. Entwicklung des Sonnenkompaß und sein Stellenwert im Orientierungssystem. J Ornithol 122:1–22Google Scholar
  37. Wiltschko R (1983) The ontogeny of orientation in young pigeons. Comp Biochem Physiol 76A:701–708Google Scholar
  38. Wiltschko R (1992) Das Verhalten verfrachteter Vögel. Vogelwarte 36:249–310Google Scholar
  39. Wiltschko R (1993) Pigeon homing: Release site biases and their interpretation. In: Royal Institute of Navigation (ed) Orientation and navigation — birds, humans and other animals. Royal Institute of Navigation, Oxford, Paper 15Google Scholar
  40. Wiltschko R, Wiltschko W (1980) The process of learning sun compass orientation in young homing pigeons. Naturwissenschaften 67:512–514Google Scholar
  41. Wiltschko R, Wiltschko W (1981) The development of sun compass orientation in young homing pigeons. Behav Ecol Sociobiol 9:135–141Google Scholar
  42. Wiltschko R, Wiltschko W (1985) Pigeon homing: change in navigational strategy during ontogeny. Anim Behav 33:583–590Google Scholar
  43. Wiltschko W (1993) Magnetic compass orientation in birds and other animals. In: Royal Institute of Navigation (ed) Orientation and navigation — birds, humans and other animals. Royal Institute of Navigation, Oxford, Paper 12Google Scholar
  44. Wiltschko W, Balda RP (1989) Sun compass orientation in seed-caching scrub jays (Aphelocoma coerulescens). J Comp Physiol 164:717–721Google Scholar
  45. Wiltschko W, Wiltschko R (1988) Magnetic orientation in birds. Curr Ornithol 5:67–121Google Scholar
  46. Wiltschko W, Wiltschko R, Keeton WT (1984) Effect of a “permanent” clock-shift on the orientation of experienced homing pigeons. Behav Ecol Sociobiol 15:263–272Google Scholar
  47. Wiltschko W, Beason RC, Wiltschko R (1990) Sensory basis of orientation: concluding remarks. In: Bell BD, Cossee RO, Flux JEC, Heather BD, Hitchmough RA, Robertson CJR, Williams MS (eds) Acta XX Congr Internat Ornithol. Ornithological Congress Trust Board, Christchurch, New Zealand, pp 1845–1850Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Roswitha Wiltschko
    • 1
  • Richard Kumpfmüller
    • 1
  • Renate Muth
    • 1
  • Wolfgang Wiltschko
    • 1
  1. 1.ZoologieFachbereich Biologie der UniversitätFrankfurt a.M.Germany

Personalised recommendations