Applied Microbiology and Biotechnology

, Volume 43, Issue 6, pp 961–966 | Cite as

Sulfur chemistry, biofilm, and the (in)direct attack mechanism — a critical evaluation of bacterial leaching

  • W. Sand
  • T. Gerke
  • R. Hallmann
  • A. Schippers


It has been shown (a) that bacterial leaching of metal sulfides apparently requires the attachment of leach bacteria to metal sulfides, (b) that exopolymerbound iron compounds are responsible for or at least considerably increase the rate of the biological attack over the chemical rate, (c) that the primary attacking agent in leaching environments is the ferric iron hexahydrate ion, (c) that thiosulfate is the first intermediate sulfur compound, giving rise to a variety of other compounds including polythionate-containing periplasmic granula, and (d) that we have no idea about the actual concentrations of protons, ferrous/ferric and/or other cations, and sulfur compounds in the reaction space between the bacterium and the sulfide surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuna J, Rojas J, Amaro AM, Toledo H, Jerez CC (1992) Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. FEMS Microbiol Lett 96: 37–42Google Scholar
  2. Arredondo R, Garcia A, Jerez CA (1994) Partial removal of lipopolysaccharide for Thiobacillus ferrooxidans affects its adhesion to solids. Appl Environ Microbiol 60: 2846–2851Google Scholar
  3. Blake II RC, Shute EA, Howard GT (1994) Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 60: 3349–3357Google Scholar
  4. Chakraborty R, Roy P (1992) Chemotaxis of chemolithotrophic Thiobacillus ferrooxidans toward thiosulfate. FEMS Microbiol Lett 98: 9–12Google Scholar
  5. Colmer AR, Temple KT, Hinkle ME (1950) An iron-oxidizing bacterium from the acid mine drainage of some bituminous coal mines. J Bacteriol 59: 317–328Google Scholar
  6. Duncan DW, Landesman J, Walden CC (1967) Role of Thiobacillus ferrooxidans in the oxidation of sulfide minerals. Can J Microbiol 13: 397–403Google Scholar
  7. Ehrlich HL (1990) Geomicrobiology. Dekker, New YorkGoogle Scholar
  8. Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55: 1249–1257Google Scholar
  9. Goroll D (1976) Ökologie von Thiobacillus neapolitanus und seine mögliche Mitwirkung im Leaching-Prozeß. Z Allg Mikrobiol 16: 3–7Google Scholar
  10. Hallmann R, Friedrich A, Koops HP, Pommerening-Roeser A, Rohde K, Zenneck C, Sand W (1993) Physiological characteristics of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans and physiochemical factors influence microbial metal leaching. Geomicrobiol J 10: 193–206Google Scholar
  11. Lane DJ, Harrison AP Jr, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol 174: 269–278Google Scholar
  12. Loosdrecht MCM van, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54: 75–87Google Scholar
  13. Lowson RT (1982) Aqueous oxidation of pyrite by molecualr oxygen. Chem Rev 82: 461–497Google Scholar
  14. Luther GW III (1987) Pyrite oxidation and reduction: molecular orbital theory considerations. Geochim Cosmochim Acta 51: 3193–3199Google Scholar
  15. Mackintosh ME (1978) Nitrogen fixation by Thiobacillus ferrooxidans. J Gen Microbiol 105: 215–218Google Scholar
  16. Mittleman MW, Geesey GG (1985) Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium. Appl Environ Microbiol 49: 846–851Google Scholar
  17. Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and ferric iron. Geochim Cosmochim Acta 51: 1561–1571Google Scholar
  18. Mustin C, Donato P de, Berthelin J (1992) Quantification of the intragranular porosity formed in bioleaching of pyrite by Thiobacillus ferrooxidans. Biotechnol Bioeng 39: 1121–1127Google Scholar
  19. Okuzumi M, Kita Y (1965) Studies on biochemistry of the thiobacilli. Part VI. Oxidation of thiosulfate to tetrathionate by T. thiooxidans. Agric Biol Chem 29: 1063–1068Google Scholar
  20. Pichtel JR, Dick WA (1991a) Sulfur, iron and solid phase transformations during the biological oxidation of pyritic mine spoil. Soil Biol Biochem 23: 101–107Google Scholar
  21. Pichtel JR, Dick WA (1991b) Influence of biological inhibitors on the oxidation of pyritic mine spoil. Soil Biol Biochem 23: 109–116Google Scholar
  22. Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG (1990a) Oxidation of reduced inorganis sulphur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293–306Google Scholar
  23. Pronk TJ, Meulenberg R, Berg DLC van den, Batenburg-van der Vegte W, Bos P, Kuenen JG (1990b) Mixotrophic and autotrophic growth of Thiobacillus acidophilus on glucose and thiosulfate. Appl Environ Microbiol 56: 3395–3401Google Scholar
  24. Rickard PAD, Vanselow DG (1978) Investigations into the kinetics and stochiometry of bacterial oxidation of covellite (CuS) using a polarographic oxygen probe. Can J Microbiol 24: 998–1003Google Scholar
  25. Rodriguez-Leiva M, Tributsch H (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149: 401–405Google Scholar
  26. Rossi G (1990) Biohydrometallurgy. McGraw-Hill, HamburgGoogle Scholar
  27. Sand W, Rohde K, Sobotke B, Zenneck C (1992) Evaluation of Leptospirillum ferrooxidans for leaching. Appl Environ Microbiol 58: 85–92Google Scholar
  28. Sand W, Hallmann R, Rohde K, Sobotke B, Wentzien S (1993) Controlled microbiological in-situ stope leaching of a sulphidic ore. Appl Microbiol Biotechnol 40: 421–426Google Scholar
  29. Schippers A, Hallmann R, Rège H von, Wentzien S, Sand W (1994) Microbial diversity in uranium mine waste heaps. Appl Environ Microbiol 61 (in press)Google Scholar
  30. Sinha DB, Walden CC (1966) Formation of polythionates and their interrelationships during oxidation of thiosulphate by T. ferrooxidans. Can J Microbiol 12: 1041–1054Google Scholar
  31. Steudel R (1989) On the nature of the “elemental sulfur” (So) produced by sulfur-oxidizing bacteria — a model for So globules. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin Heidelberg New York, pp 289–303Google Scholar
  32. Steudel R, Holdt G (1988) Solubilization of elemental sulfur in water by cationic and anionic surfactants. Angew Chem Int Ed Engl 27: 1358–1359Google Scholar
  33. Steudel R, Holdt G, Göbel T, Hazeu W (1987) Chromatographic separation of higher polythionates SnO62− (n = 3...22) and their detection in cultures of Thiobacillus ferrooxidans; molecular composition of bacterial sulfur excretions. Angew Chem Int Ed Engl 26: 151–153Google Scholar
  34. Sugio T, Mizunashi W, Inagaki K, Tano T (1987) Purification and some properties of sulfur: ferric iron oxidoreductase from Thiobacillus ferrooxidans. J Bacteriol 169: 4916–4922Google Scholar
  35. Tributsch H, Bennett JC (1981a) Semiconductor — electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps. J Chem Technol Biotechnol 31: 565–577Google Scholar
  36. Tributsch H, Bennett JC (1981b) Semiconductor — electrochemical aspects of bacterial leaching. Part 2. Survey of rate-controlling sulphide properties. J Chem Technol Biotechnol 31: 627–635Google Scholar
  37. Tuovinen (1990) Biological fundamentals of mineral leaching processes. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 55–77Google Scholar
  38. Wentzien S, Sand W, Albertsen A, Steudel R (1994) Thiosulfate and tetrathionate degradation as well as biofilm generation by Thiobacillus intermedius and Thiobacillus versutus studied by microcalorimetry, HPLC, and ion-pair chromatography. Arch Microbiol 161: 116–125Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • W. Sand
    • 1
  • T. Gerke
    • 1
  • R. Hallmann
    • 1
  • A. Schippers
    • 1
  1. 1.Abteilung MikrobiologieInstitut für Allgemeine Botanik und Botanischer Garten der Universität HamburgHamburgGermany

Personalised recommendations