Behavioral Ecology and Sociobiology

, Volume 32, Issue 4, pp 221–228 | Cite as

Mate choice and fitness in a hybrid frog: Rana esculenta females prefer Rana lessonae males over their own

  • Gaby Abt
  • Heinz-Ulrich Reyer


The evolution and maintenance of female choice based on purely genetic differences is still a controversial issue, not only for theoretical reasons, but also because of the practical difficulty of demonstrating the fitness consequences of preferences and heritability of and genetic variability in the chosen traits. We argue that hybrid systems (broadly defined) offer suitable models for studying mate choice according to genetic differences. We present such a study for European water-frogs of the “hybridogenetic” Rana lessonae/Rana esculenta complex (L/E complex). R. esculenta, originally a hybrid between R. lessonae and R. ridibunda, eliminates the L genome premeiotically and only produces eggs and sperm containing only the R. ridibunda (R) genome. Consequently, the hybrid will only persist when it lives and mates with R. lessonae in mixed populations where it can regain the lost L genome. In such mixed populations, there is strong selection against E x E matings. because these will produce no viable offspring. We tested whether females of the hybrid R. esculenta do indeed avoid their own R. exculenta males and choose males of the parental species R. lessonae instead. Eleven E females were offered a simultaenous choice between one L and one E male. Females exhibited a significant preference for L males that was determined by the type of male, rather than by its size or activity. This choice is in the direction predicted from genetics. The question of why L males “agree” to mate with E females, but L females only rarely mate with E males, is answered by a sexual asymmetry in the cost/benefit ratios of mating with the wrong type and the right size. Our results are consistent with the mating pattern found in natural populations, but further studies are needed to show that female choice really causes this pattern.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abt G (1992) Die Rolle der Weibchenwahl bei der Fortpflanzung der Hybridart Rana esculenta. Unpubl MSc thesis, University of ZürichGoogle Scholar
  2. Arak A (1983) Male-male competition and mate choice in anuran amphibians. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, pp 181–210Google Scholar
  3. Arak A (1988) Female mate selection in the natterjack toad: active choice or passive attraction? Behav Ecol Sociobiol 22:317–327Google Scholar
  4. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148Google Scholar
  5. Barton NH, Hewitt GM (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503Google Scholar
  6. Berger L (1968) Morphology of the F1 generation of various crosses within the Rana esculenta complex. Acta Zool Cracov 13:301–324Google Scholar
  7. Berger L (1976) Hybrids of B-2 generations of European water frogs (Rana esculenta complex). Ann Zool Warsaw 33:201–214Google Scholar
  8. Berger L (1977) Systematics and hybridization in the Rana esculenta complex. In: Taylor DH, Guttmann SI (eds) The reproductive biology of amphibians. Plenum Press, New York, pp 367–388Google Scholar
  9. Berger L (1983) Western Palearctic water frogs (Amphibia, Ranidae): systematics, genetics and population compositions. Experientia 39:127–130Google Scholar
  10. Blair WF (1964) Isolating mechanisms and interspecific interactions in anuran amphibians. Q Rev Biol 39:334–344Google Scholar
  11. Blankenhorn H (1974) Soziale Organisation einer Mischpopulation von Rana lessonae Camerano and Rana esculenta Linnaeus. Unpubl PhD thesis, Univesity of ZürichGoogle Scholar
  12. Blankenhorn H (1977) Reproduction and mating behaviour in Rana lessonae - Rana esculenta mixed populations. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians. Plenum Press, New York, pp 389–410Google Scholar
  13. Blankenhorn HJ, Heusser H, Vogel P (1971) Drei Ph-notypen von Grünfröschen aus dem Rana esculenta-Komplex in der Schweiz. Rev Suisse Zool 78:1242–1247Google Scholar
  14. Bradbury JW, Anderson MB (eds) (1987) Sexual selection: testing the alternatives. John Wiley & Sons, ChichesterGoogle Scholar
  15. Brzoska J (1980) Quantitative studies on the elicitation of the electrodermal response by calls and synthetic acoustical stimuli in Rana lessonae Camerano, Rana r. ridibunda Pallas and the hybrid Rana “esculenta” L. (Anura, Amphibia). Behav Proc 5:113–141Google Scholar
  16. Darwin C (1871) The descent of man and selection in relation to sex. John Murray, LondonGoogle Scholar
  17. Davies NB, Halliday TR (1977) Optimal mate selection in the toad Bufo bufo. Nature 269:56–58Google Scholar
  18. Emlen ST (1976) Lek organization and mating strategies in the bullfrog. Behav Ecol Sociobiol 1:283–313Google Scholar
  19. Gerhardt HC (1988) Acoustic properties used in call recognition by frogs and toads. In: Fritsch B, Hethington T, Ryan M, Wilcynski W, Walkowiak W (eds) The evolution of the amphibian auditory system. John Wiley, New York, pp 455–483Google Scholar
  20. Gerhardt HC (1991) Female choice in treefrogs: static and dynamic acoustic criteria. Anim Behav 42:615–635Google Scholar
  21. Graf J-D, Müller WP (1979) Experimental gynogenesis provides evidence of hybridogenetic reproduction in the Rana esculentá complex. Experientia 35:1574–1576Google Scholar
  22. Graf J-D, Polls Pelaz M (1989) Evolutionary genetics of the Rana esculenta complex. In: Dawley RM, Bogart JP (eds) Evolution and ecology of unisexual vertebrates. (Bulletin 466). New York State Museum, Albany, pp 289–301Google Scholar
  23. Grafen A (1990) Do animals really recognize kin? Anim Behav 39:42–54Google Scholar
  24. Grant PR, Grant BR (1992) Hybridization of bird species. Science 256:193–197Google Scholar
  25. Günther R (1973) Über die verwandtschaftlichen Beziehungen zwischen den europäischen Grünfröschen und den Bastardcharakter von Rana esculenta L. (Anura, Amphibia). Zool Anz 190:250–285Google Scholar
  26. Günther R (1990) Die Wasserfrösche Europas (Anuren-Froschlurche). Neue Brehm Bücherei, WittenbergGoogle Scholar
  27. Halliday TR (1983a) Do frogs and toads choose their mates? Nature 306:226–227Google Scholar
  28. Halliday TR (1983b) The study of mate choice. In: Bateson P (ed) Mate choice. Cambridge University Press, Cambridge, pp 3–32Google Scholar
  29. Halliday TR (1987) Physiological constraints on sexual selection. In: Bradbury JW, Anderson MB (eds) Sexual selection: testing the alternatives. John Wiley & Sons, Chichester, pp 247–264Google Scholar
  30. Harrison RG (1990) Hybrid zones: windows on evolutionary process. Futuyma D, Antonovics J (eds) Oxford surveys in evolutionary biology, vol. 7. Oxford University Press, Oxford, pp 69–128Google Scholar
  31. Harvey PH, Bradbury JW (1991) Sexual selection. In: Krebs JR, Davies NB (eds) Behavioural ecology — an evolutionary approach, 3rd edn. Blackwell, London, pp 203–233Google Scholar
  32. Hay DE, McPhail JD (1975) Mate selection in three-spined sticklebacks. Can J Zool 53:441–450Google Scholar
  33. Hewitt GM (1988) Hybrid zones — natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167Google Scholar
  34. Howard RD (1978) The evolution of mating strategies in bullfrogs, Rana catesbeiana. Evolution 32:850–871Google Scholar
  35. Kirkpatrick M, Ryan MJ (1991) The evolution of mating preferences and the paradox of the lek. Nature 350:33–38Google Scholar
  36. Lande R, Kirkpatrick M (1988) Ecological speciation by sexual selection. J Theor Biol 133:85–98Google Scholar
  37. Lenington S, Coopersmith C, Williams J (1992) Genetic basis of mating preferences in wild house mice. Am Zool 32:40–47Google Scholar
  38. Licht LE (1976) Sexual selection in toads (Bufo americanus). Can J Zool 54:1277–1284Google Scholar
  39. Maynard Smith J (1991) Theories of sexual selection. Trends Ecol Evol 6:146–151Google Scholar
  40. Notter P (1974) Zum Paarungsverhalten von Rana lessonae Cam. und Rana esculenta L. Unpubl. MSc thesis, University of ZürichGoogle Scholar
  41. Parker GA (1983) Mate quality and mating decisions. In: Bateson P (ed) Mate choice. Cambridge Universtiy Press, Cambridge, pp 141–164Google Scholar
  42. Phelan PL, Baker T (1987) Evolution of male pheromones in moths: Reproductive isolation through sexual selection? Science 235:205–207Google Scholar
  43. Polls Pelaz M, Graf J-D (1989) Triploid all-male genealogies in a Rana lessonae — Rana kl. esculenta hybridogenetic population. Poster during 1st World Congress of Herpetology, Canterbury, 11–19 September 1989Google Scholar
  44. Radwan MM, Schneider H (1988) Social behaviour, call repertory and variation in the calls of the pool frog, Rana lessonae (Anura: Ranidae). Amphibia-Reptilia 9:329–351Google Scholar
  45. Robertson JGM (1986) Female choice, male strategies and the role of vocalization in the Australian frog Uperoleia rugosa. Anim Behav 34:773–784Google Scholar
  46. Robertson JGM (1990) Female choice increases fertilization success in the Australian frog, Uperoleia laevigata. Anim Behav 39:639–645Google Scholar
  47. Ryan MJ (1985) The Túngara frog — a study in sexual selection and communication. University of Chicago Press, ChicagoGoogle Scholar
  48. Ryan MJ (1991) Sexual selection and communication in frogs. Trends Ecol Evol 6:351–355Google Scholar
  49. Schultz RJ (1969) Hybridization, unisexuallity, and polypoidy in the teleost Poeciliopsis (Poecilidae) and other vertebrates. Am Nat 103:605–619Google Scholar
  50. Semlitsch RD, Reyer H-U (1992) Performance of tadpoles from the hybridogenetic Rana esculenta complex: Interactions with pond drying and interspecific competition. Evolution 46:665–676Google Scholar
  51. Sullivan BK (1983) Sexual selection in Woodhouse's toad (Bufo woodhousei). II. Female choice. Anim Behav 31:1011–1017Google Scholar
  52. Summers K (1989) Sexual selection and intra-female competition in the green poison-dart frog, Dendrobates auratus. Anim Behav 37:797–805Google Scholar
  53. Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man. Heinemann, London, pp 136–179Google Scholar
  54. Tunner HG (1973) Das Albumin und andere Bluteiweisse bei Rana ridibunda Pallas, Rana lessonae Camerano, Rana esculenta Linné und deren Hybriden. Z Zool Syst Evolutionsforsch 11:219–233Google Scholar
  55. Tunner HG (1974) Die klonale Struktur einer Wasserforschpopulation. Z Zool Syst Evolutionsforsch 12:309–314Google Scholar
  56. Uzzell T, Hotz H-J, Berger L (1980) Genome exclusion in gametogenesis by an interspecific Rana hybrid: evidence from electrophresis of individual oocytes. J Exp Zool 214:251–259Google Scholar
  57. Vogel P (1973) Elektrophoretische Untersuchungen der Serumproteine von Grünfröschen aus dem Rana esculenta-Komplex. Unpubl. MSc thesis, University of ZürichGoogle Scholar
  58. Waldmann B, Rice JE, Honeycut RL (1992) Kin recognition and incest avoidance in toads. Am Zool 32:18–30Google Scholar
  59. Wells KD (1977) The social behaviour of anuran amphibians. Anim Behav 25: 666–693Google Scholar
  60. Wilson DS, Hedrick A (1982) Speciation and the economics of mate choice. Evol Theor 6:15–24Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Gaby Abt
    • 1
  • Heinz-Ulrich Reyer
    • 1
  1. 1.Zoologisches InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations