Solar Physics

, Volume 163, Issue 1, pp 193–203 | Cite as

A nonlinear RLC solar cycle model

  • J. M. Polygiannakis
  • X. Moussas
  • C. P. Sonett
Article

Abstract

A simplified, monoparametric model, based on the Van der Pol nonlinear RLC electric oscillator, is found capable of describing the shape and related morphological properties (such as the Waldmeier effect) of the sunspot cycles. The model can also exhibit long periods of sunspot inactivity of the Maunder Minimum type. According to the model, the significant rise-to-fall time asymmetry of the most recent cycles suggests that it is unlikely that another cycle suppression will occur in the forthcoming decades. The complete sunspot record and the system's attractor are successfully emulated, given the sunspot number at cycle maxima.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bracewell, R. N.: 1986, Nature 323, 516.Google Scholar
  2. Bravo, S. and Stewart, G.: 1994, Solar Phys. 154, 377.Google Scholar
  3. Broomhead, D. S. and King, G. P.: 1986, Physica D20, 217.Google Scholar
  4. Buzug, T. and Pfister, G.: 1992, Physica D58, 127.Google Scholar
  5. Carbonell, M. and Ballester, J. L.: 1992, Astron. Astrophys. 255, 350.Google Scholar
  6. Cerrito, P. B.: 1992, Astrophys. J. 393, 795.Google Scholar
  7. Chua, L. O., Desoer, C. A., and Kuh, E. S.: 1987, Linear and Nonlinear Circuits, McGraw-Hill, Singapore, p. 432.Google Scholar
  8. Donahue, R. A. and Baliunas, S. L.: 1992, Solar Phys. 141, 181.Google Scholar
  9. Eddy, J. A.: 1976, Science 192, 1189.Google Scholar
  10. Eddy, J. A.: 1977, in R. A. Pepin, J. A. Eddy, and R. B. Merrill (eds.), The Ancient Sun, Pergamon Press, New York.Google Scholar
  11. Eddy, J. A. (ed.): 1978, The New Solar Physics, AAAS Selected Symposium 17, Westview Press, Colorado, p. 11.Google Scholar
  12. Elling, W. and Schwentek, H.: 1992, Solar Phys. 137, 155.Google Scholar
  13. Feynman, J. and Gabriel, S. B.: 1990, Solar Phys. 127, 393.Google Scholar
  14. Fraser, A. M.: 1989, Physica D34, 391.Google Scholar
  15. Fraser, A. M. and Swiney, H. L.: 1986, Phys. Rev. Letters A33, 1134.Google Scholar
  16. Froehling, H., Cruchfield, J. P., Farmer, D., Packard, N. H., and Shaw, R.: 1981, Physica 3D, 605.Google Scholar
  17. Fröhlich, C.: 1992, in R. F. Donnelly (ed.), Proceedings of the Workshop on the Solar Electromagnetic Radiation Study for Solar Cycle 22, p. 1.Google Scholar
  18. Hale, J. K. and Koçak, H.: 1991, in F. John, J. E. Marsden, L. Sirovich, M. Golubitski, and W. Jager (eds.), Dynamics and Bifurcations, Springer-Verlag, New York, p. 344.Google Scholar
  19. Hathaway, D. H., Wislon, R. M., and Reichmann, E. J.: 1994, Solar Phys. 151, 177.Google Scholar
  20. Hoyt, D. V., Kyle, H. L., Hickey J. R., and Maschhoff, R. H.: in R. F. Donnelly (ed.), 1992, Proceedings of the Workshop on the Solar Electromagnetic Radiation Study for Solar Cycle 22, p. 43.Google Scholar
  21. Kane, R. P.: 1987, Solar Phys. 108, 415.Google Scholar
  22. Kremliovski, M. N.: 1994, Solar Phys. 151, 351.Google Scholar
  23. Kurths, J. and Ruzmaikin, A. A.: 1990, Solar Phys. 126, 407.Google Scholar
  24. Leftus, V.: 1994, Solar Phys. 149, 405.Google Scholar
  25. Morfill, G. E., Scheingraber, H., Voges, W., and Sonett, C. P.: 1990, in C.P. Sonnet et al. (eds.), The Sun in Time, University of Arizona Press, Tucson, p. 30.Google Scholar
  26. Mundt, M. D., Maguire, W. B., and Chase, R. R. P.: 1991, J. Geophys. Res. 96, A2, 1705.Google Scholar
  27. Nordermann, D. J. R.: 1992, Solar Phys. 141, 199.Google Scholar
  28. Nordermann, D. J. R. and Trivedi, N. B.: 1992, Solar Phys. 142, 411.Google Scholar
  29. Packard, N. H., Cruchfield, J. P., Farmer, J. D., and Shaw, R. S.: 1980, Phys. Rev. Letters 45, 712.Google Scholar
  30. Preparata, F. P. and Shamos, M. I.: 1990, Computational Geometry, Springer-Verlag, Virginia, p. 98.Google Scholar
  31. Ribes, J. C. and Nesme-Ribes, E.: 1994, Astron. Astrophys. 276, 549.Google Scholar
  32. Roselot, J. P.: 1994, Solar Phys. 149, 149.Google Scholar
  33. Ross, S. L.: 1984, Differential Equations, third edition, Wiley, New York, p. 703.Google Scholar
  34. Ruzmaikin, A. A.: 1981, Comm. Astrophys. 9, 1313.Google Scholar
  35. Ruzmaikin, A. A., Feynman, J., and Robinson, P.: 1994, Solar Phys. 149, 395.Google Scholar
  36. Schatten, K. H.: 1990, Solar Phys. 125, 185.Google Scholar
  37. Schatten, K. H. and Pesnell, W. D.: 1993, J. Geophys. Res. 20, 20 2275.Google Scholar
  38. Schatten, K. H., Scherrer, P. H., Svalgaard, L., and Wilcox, J. M.: 1978, Geophys. Res. Letters 5, 411.Google Scholar
  39. Solar-Geophysical Data: 1994, U.S. Dept. of Commerce.Google Scholar
  40. Sonett, C. P: 1982, Geoph. Res. Letters 9, 1313.Google Scholar
  41. Sonett, C. P.: 1983a, J. Geoph. Res. 88, 3225.Google Scholar
  42. Sonett, C.P.: 1983b, Nature 300, 670.Google Scholar
  43. Takens, F.: 1981, Lecture Notes in Math. 898, Springer-Verlag, Berlin, p. 366.Google Scholar
  44. Tsonis, A.: 1992, Chaos, from Theory to Applications, Plenum Press, New York, p. 45.Google Scholar
  45. Vigouroux, A. and Delache, P.: 1994, Solar Phys. 152, 267.Google Scholar
  46. Waldmeier, M.: 1961, The Sunspot Activity in the Years 1610–1960, Zürich Schulthess and Company AG.Google Scholar
  47. Wilson, R. M.: 1992, Solar Phys. 140, 181.Google Scholar
  48. Wolff, C. L.: 1992, Solar Phys. 142, 187.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • J. M. Polygiannakis
    • 1
  • X. Moussas
    • 1
  • C. P. Sonett
    • 2
  1. 1.Section of Astronomy, Astrophysics and Mechanics, Department of PhysicsNational University of AthensAthensGreece
  2. 2.Department of Planetary SciencesLunar and Planetary LaboratoryTucsonU.S.A.

Personalised recommendations