Applied Microbiology and Biotechnology

, Volume 44, Issue 1–2, pp 190–197

Influence of physiological conditions on EDTA degradation

  • L. Henneken
  • B. Nörtemann
  • D. C. Hempel
Applied Microbial and Cell Physiology

Abstract

Aerobic biodegradation of the chelating agent EDTA by a mixed bacterial culture was investigated. Bacterial growth and degradation of the substrate required the presence of sufficient metal ions in the culture fluid. Uncomplexed EDTA interacted negatively with the cell walls of the bacteria and completely inhibited bacterial growth, whereas Mg(II)/Ca(II)-EDTA was degraded up to an initial concentration of 4.7 g/l. Therefore, concentrations of metal ions must be stoichiometric to that of EDTA or higher. Specific degradation rates ranged between 120 mg EDTA g−1 (cell dry weight) h−1 and 285 mg EDTA g−1 h−1. In contrast, complexes with high thermodynamic stability constants such as Fe(III)-EDTA remained as inert compounds in the solution. Specific growth rates of the mixed culture were found to vary between 0.03 h−1 and 0.07 h−1, which could be explained by population dynamics within the synergistic mixed community. Growth was significantly accelerated by the addition of vitamins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alder AC, Siegrist H, Gujer W, Giger W (1990) Behaviour of NTA and EDTA in biological wastewater treatment. Water Res 24:733–742Google Scholar
  2. Belly RT, Lauff JJ, Goodhue CT (1975) Degradation of ethylenediaminetetraacetic acid by microbial populations from an aerated lagoon. Appl Microbiol 29:787–794Google Scholar
  3. Francis AJ, Dodge CJ, Gillow JB (1992) Biodegradation of metal citrate complexes and implications for toxic-metal mobility. Nature 356:140–142Google Scholar
  4. Gschwind N (1991) Biologischer Abbau von EDTA in einem Modellabwasser. gwf-Wasser/Abwasser 133:546–549Google Scholar
  5. Haberer K (1991) Rheinwasser als Rohstoff für die Grundwasseranreicherung in Wiesbaden. gwf-Wasser/Abwasser 132:60–64Google Scholar
  6. Henneken L, Klüner T, Nörtemann B, Hempel DC (1994) Abbau von EDTA mit freien und immobilisierten Zellen. gwf-Wasser/Abwasser 135:354–358Google Scholar
  7. Hüppe P, Höke H, Hempel DC (1990) Biological treatment of effluents from a coal tar refinery using immobilized biomass. Chem Eng Technol 13:73–79Google Scholar
  8. Kakii K, Yamaguchi H, Iguchi Y, Teshima M, Shirakashi T, Kuriyama M (1986) Isolation and growth characteristics of nitrolotriacetate-degrading bacteria. J Ferment Technol 64: 103–108Google Scholar
  9. Klüner T, Henneken L, Gehle M, Brüggenthies A, Nörtemann B, Hempel DC (1994) Katabolismus von Ethylendiamintetraacetat (EDTA). Bioforum 17:284–288Google Scholar
  10. Koch B, Ostermann M, Höke H, Hempel DC (1991) Sand and activated carbon as biofilm carriers for microbial degradation of phenols and nitrogen containing aromatic compounds. Water Res 25:1–8Google Scholar
  11. Lauff JJ, Steele DB, Coogan LA, Breitfeller JM (1990) Degradation of the ferric chelate of EDTA by a pure culture of an Agrobacterium sp. Appl Environ Microbiol 56:3346–3353Google Scholar
  12. Martell AE, Smith RM (1974) Critical stability contants, vol 1. Plenum, New YorkGoogle Scholar
  13. Nörtemann B (1992) Total degradation of EDTA by mixed cultures and a bacterial isolate. Appl Environ Microbiol 58:671–676Google Scholar
  14. Nörtemann B, Imberg B, Hempel DC (1991) Biodegradation of ethylenediaminetetraacetate. In: Verachtert H, Verstraete W (eds) Proceedings of the International Symposium on Environmental Biotechnology, Ostend, Belgium,Koninklijke Vlaamse Ingenieursverenigung, pp 259–262Google Scholar
  15. Nusch EA, Eschke HD, Kornatzki KH (1991) Die Entwicklung der NTA- und EDTA-Konzentrationen im Ruhrwasser und daraus gewonnenem Trinkwasser. Korrespondenz Abwasser 38:944–949Google Scholar
  16. Rahmen-Abwasser-VwV, Allgemeine Rahmen-Verwaltungsvorschrift über Mindestanforderungen an das Einleiten von Abwässern in Gewässer, Anhang 40 vom 8.9.1989, Anhang 53 vom 31.1.1994Google Scholar
  17. Roberts NA, Gray GW, Wilkinson SG (170) The bacterial action of ethylenediaminetetraacetic acid on Pseudomonas aeruginosa. Microbios 7–8:189–208Google Scholar
  18. Tiedje JM (1975) Microbial degradation of ethylenediaminetetraacetate in soils and sediments. Appl Microbiol 30:327–329Google Scholar
  19. Wagner K, Hempel DC (1988) Biodegradation by immobilized bacteria in an airlift-loop reactor—influence of biofilm diffusion limitation. Biotechnol Bioeng 31:559–566Google Scholar
  20. Wilkinson SG (1970) Cell walls of Pseudomonas species sensitive to ethylenediaminetraacetic acid. J Bacteriol 104:1035–1044Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • L. Henneken
    • 1
  • B. Nörtemann
    • 2
  • D. C. Hempel
    • 2
  1. 1.Technical Chemistry and Chemical EngineeringUniversity of PaderbornPaderbornGermany
  2. 2.Institut für BioverfahrenstechnikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations