Advertisement

Boundary-Layer Meteorology

, Volume 26, Issue 1, pp 81–93 | Cite as

Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes

  • P. Schotanus
  • F.T.M. Nieuwstadt
  • H.A.R. De Bruin
Article

Abstract

The possibility of measuring heat and moisture fluxes using sonic anemometer data is investigated. Theoretical relations for the temperature variance and heat flux are derived. In the first part of this paper, these relations are verified by experimental data, involving a sonic anemometer, a fast thermocouple and a Lyman-α hygrometer. In the second part we propose two simple procedures to estimate heat flux from sonic anemometer data. The first one requires a rough estimate of the Bowen ratio; for the second one the net radiation is needed. Using the last method, a good estimate of the moisture flux is also obtained.

Keywords

Radiation Experimental Data Heat Flux Temperature Variance Temperature Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bruin, H. A. R. de and Holtslag, A. A. M.: 1982, ‘A Simple Parametrisation of the Surface Fluxes of Sensible and Latent Heat During Daytime Compared with the Penman-Monteith Concept’, J. Appl. Meteorol. 21, 1610–1621.Google Scholar
  2. Buck, A. L.: 1973, ‘Development of an Improved Lyman-alpha Hygrometer’, Atmos. Technol. 2, 43–46.Google Scholar
  3. Buck, A. L.: 1976, ‘The Variable Path Lyman-alpha Hygrometer and its Operating Characteristics’, Bull. Amer. Meteorol. Soc. 57, 1113–1118.Google Scholar
  4. Driedonks, A. G. M., van Dop, H., and Kohsiek, W. H.: 1978, ‘Meteorological Observations on the 213 m mast at Cabauw, in the Netherlands’, Proceedings on: Fourth Symposium on Meteor. Observ. and Instr., Denver, Colo. Amer. Meteorol. Soc., Boston, pp. 41–46.Google Scholar
  5. Friehe, C. A.: 1976, ‘Effects of Sound Speed Fluctuations on Sonic Anemometer Measurements’, J. Appl. Meteorol. 15, 607–610.Google Scholar
  6. Funk, J. P.: 1959, ‘Improved Polythene-Shielded Net Radiometer’, J. Sci. Instr. 36, 267–270.Google Scholar
  7. Hanafusa, T., Kobori, Y., and Mitsuta, Y.: 1980, ‘Single Head Sonic Anemometer-Thermometer’, from: The Boulder Low Level Intercomparison Experiment, Preprint of WMO report NOAA/ERL, Boulder, Colo.Google Scholar
  8. Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: 1971, ‘An Experimental Study of Reynolds Stress and Heat Flux in the Atmospheric Surface Layer’, Quart. J. R. Meteorol. Soc. 97, 168–180.Google Scholar
  9. Kaimal, J. C.: 1969, ‘Measurement of Momentum and Heat Flux Variations in the Surface Boundary Layer’, Radio Science 4, 1147–1153.Google Scholar
  10. Kaimal, J. C.: 1975, ‘Sensors and Techniques for Direct Measurement of Turbulent Fluxes and Profiles in the Atmospheric Surface Layer’, Atmos. Technol. 7, 7–14.Google Scholar
  11. Kaimal, J. C.: 1979, ‘Sonic Anemometer Measurement of Atmospheric Turbulence’, Proc. Dynamic Flow. Conf., 1978, pp. 551–565, P.O. Box 121, DK 2740 Skovlunde, Denmark.Google Scholar
  12. Kaimal, J. C. and Businger, J. A.: 1963, ‘A Continuous-Wave Sonic Anemometer-Thermometer’, J. Appl. Meteorol. 2, 156–164.Google Scholar
  13. Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surface Layer Turbulence’, Quart. J. R. Meteorol. Soc. 98, 563–589.Google Scholar
  14. Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.Google Scholar
  15. Wyngaard, J. C.: 1981, ‘Cup, Propeller, Vane and Sonic Anemometers in Turbulence Research’, Ann. Rev. Fluid. Mech. 13, 399–423.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • P. Schotanus
    • 1
  • F.T.M. Nieuwstadt
    • 2
  • H.A.R. De Bruin
    • 2
  1. 1.Institute for Meteorology and Oceanography, University of UtrechtUtrechtThe Netherlands
  2. 2.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands

Personalised recommendations