Journal of Mathematical Biology

, Volume 29, Issue 6, pp 513–529 | Cite as

The dynamical attainability of ESS in evolutionary games

  • T. Takada
  • J. Kigami
Article

Abstract

In this paper, the attainability of ESS of the evolutionary game among n players under the frequency-independent selection is studied by means of a mathematical model describing the dynamical development and a concept of stability (strongly determined stability). It is assumed that natural selection and small mutations cause the phenotype to change gradually in the direction of fitness increasing. It is shown that (1) the ESS solution is not always evolutionarily attainable in the evolutionary dynamics, (2) in the game where the interaction between two species is completely competitive, the Nash solution is always attainable, and (3) one of two species may attain the state of minimum fitness as a result of evolution. The attainability of ESS is also examined in two game models on the sex ratio of wasps and aphids in light of our criterion of the attainability of ESS.

Key words

Evolutonary game Dynamical attainability of ESS Strongly determined stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K. J., McManus, M.: A note on dynamic stability. Econometrica 26, 448–454 (1958)Google Scholar
  2. 2.
    Bahl, C. A., Cain, B. E.: The inertia of diagonal multiples of 3 × 3 real matrices. Linear Algebra Appl. 18, 267–280 (1977)Google Scholar
  3. 3.
    Cain, B. E.: Real, 3 × 3, D-stable matrices. J. Res. NBS 80B, 75–77 (1976)Google Scholar
  4. 4.
    Charnov, E. L.: Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976)Google Scholar
  5. 5.
    Cohen, D.: The optimal timing of reproduction. Am. Nat. 110, 801–807 (1976)Google Scholar
  6. 6.
    Eshel, L., Akin, E.: Coevolutionary instability of mixed Nash solutions. J. Math. Biology 18, 123–133 (1983)Google Scholar
  7. 7.
    Futuyma, D. J., Slatkin, M.: Coevolution. Sinauer Associates Inc., 1983Google Scholar
  8. 8.
    Gantmacher, T. R.: Applications of theory of matrices. Interscience Publishers. (A division of) New York: John Wiley 1959Google Scholar
  9. 9.
    Hines, W. G. S.: Multi-species population models and evolutionarily stable strategies. J. Appl. Probab. 18, 507–513 (1981)Google Scholar
  10. 10.
    Hirose, T.: A graphical analysis of life history evolution in biennials with special reference to their distribution in a sand dune system. Bot. Mag. Tokyo 90, 37–47 (1983)Google Scholar
  11. 11.
    Hofbauer, J., Schuster, P., Sigmund, K.: A note on evolutionary stable strategies and game dynamics. J. Theor. Biol. 81, 609–619 (1980)Google Scholar
  12. 12.
    12.Hofbauer, J., Sigmund, K.: Dynamical systems and the theory of evolution. Cambridge: Univeristy Press 1987Google Scholar
  13. 13.
    Jordan, D. W., Smith, P.: Nonlinear ordinary differential equations. Oxford: Clarendon Press 1977Google Scholar
  14. 14.
    Lande, R.: Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334 (1976)Google Scholar
  15. 15.
    Logofet, D. O.: On the hierarchy of subsets of stable matrices. Sov. Math., Dokl. 34, 247–250 (1987)Google Scholar
  16. 16.
    Maynard Smith, J., Price, G. R.: The logic of animal conflict. Nature 246, 15–18 (1973)Google Scholar
  17. 17.
    Nash, J. F.: Noncooperative games. Ann. Math. 54, 286–295 (1951)Google Scholar
  18. 18.
    Roughgarden, J.: The theory of coevolution. In: Futuyma, D. J., Slatkin, M. (eds.) Coevolution. (pp. 33–64) Sinauer Associates Inc. 1983Google Scholar
  19. 19.
    Shubik, M.: Game theory in the social sciences. London: MIT Press 1983Google Scholar
  20. 20.
    Smith, C. C., Fretwell, S. D.: The optimal balance between size and number of offsprings, Am. Nat., 108, 499–506 (1974)Google Scholar
  21. 21.
    Suzuki, Y., Iwasa, Y.: A sex ratio theory of gregarious parasitoids. Res. Popul. Ecol. 22, 366–382 (1980)Google Scholar
  22. 22.
    Taylor, P., Jonker, L.: Evolutionary stable strategies and game dynamics. Math. Biosci. 40, 145–156 (1978)Google Scholar
  23. 23.
    Winkler, D. W., Wallin, K.: Offspring size and number: A life history model linking effort per offspring and total effort. Amer. Nat. 129, 708–720 (1987)Google Scholar
  24. 24.
    Yamaguchi, Y.: Sex ratios of an aphid subject to local mate competition with variable maternal condition. Nature 318, 460–462 (1985)Google Scholar
  25. 25.
    Zeeman, C.: Population dynamics from game theory. In: Nitecki, Z., Robinson, C. (eds.) Global theory of dynamical systems. Proceedings, Evanston, Illinois 1979. (Lect. Notes Math., vol. 819) Berlin Heidelberg New York: Springer 1980Google Scholar
  26. 26.
    Zeeman, C.: Dynamics of the evolution of animal conflicts. J. Theor. Biol. 89, 249–270 (1981)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • T. Takada
    • 1
  • J. Kigami
    • 2
  1. 1.Department of BiophysicsKyoto UniversityKyotoJapan
  2. 2.Department of MathematicsKyoto UniversityKyotoJapan
  3. 3.School of International Cultural RelationsHokkaido Tokai UniversityMinami-ku, SapporoJapan
  4. 4.Division of System Science, Graduate School of Science & TechnologyKobe UniversityKobeJapan

Personalised recommendations