Journal of Mathematical Biology

, Volume 32, Issue 3, pp 251–268 | Cite as

Pathogen invasion and host extinction in lattice structured populations

  • Kazunori Satō
  • Hirotsugu Matsuda
  • Akira Sasaki
Article

Abstract

We examined the propagation of an infectious disease and the eventual extinction of the host population in a lattice-structured population. Both the host colonization and pathogen transmission processes are assumed to be restricted to act between the nearest neighbor sites. The model is analyzed by an improved version of pair approximation (IPA). Pair approximation is a technique to trace the dynamics of the number of nearest neighbor pairs having particular states, and IPA takes account of the clustering property of lattice models more precisely. The results are checked by computer simulations. The analysis shows: (i) in a one-dimensional lattice population, a pathogen cannot invade a host population no matter how large is the transmission rate; (ii) in a two-dimensional lattice population, pathogens will drive the host to extinction if the transmission rate is larger than a threshold. These results indicate that spatially structured population models may give qualitatively different results from conventional population models, such as Lotka-Volterra ones, without spatial structure.

Key words

Lattice model Host extinction Pathogen invasion Improved pair approximation (IPA) Contact process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brower, R. C., Furman, M. A., Moshe, M.: Critical exponents for the Reggeon quantum spin model. Phys. Lett. 76B, 213–219 (1978)Google Scholar
  2. Comins, H. N., Blatt, D. W. E.: Prey-predator models in spatially heterogeneous environments. J. Theor. Biol. 48, 75–83 (1974)Google Scholar
  3. De Roos, A. M., McCauley, E., Wilson, W. G.: Mobility versus density-limited predator-prey dynamics on different spatial scales. Proc. R. Soc. Lond., Ser. B 246, 117–122 (1991)Google Scholar
  4. Dickman, R.: Kinetic phase transitions in a surface-reaction model: mean-field theory. Phys. Rev. A 34, 4246–4250, (1986)Google Scholar
  5. Durrett, R.: Lecture notes on particle systems and percolation. California: Wadsworth & Brooks/Cole 1988Google Scholar
  6. Durrett, R., Neuhauser, C.: Epidemics with recovery in D=2. Ann. Appl. Probab. 1, 189–206 (1991)Google Scholar
  7. Durrett, R., Swindle, G.: Are there bushes in a forest? Stoch. Proc. Appl. 37, 19–31 (1991)Google Scholar
  8. Grassberger, P., De La Torre, A.: Reggeon field theory (Schlögl's first model) on a lattice: Monte Carlo calculations of critical behaviour. Ann. Phys. 122, 373–396 (1979)Google Scholar
  9. Green, D. G.: Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Vegetatio 82, 139–153 (1989)Google Scholar
  10. Hamilton, W. D.: Sex versus non-sex versus parasite. Oikos 35, 282–290 (1980)Google Scholar
  11. Hamilton, W. D., Axelrod, R., Tanase, R.: Sexual reproduction as an adaptation to resist parasites. Proc. Natl. Acad. Sci. USA 87, 3566–3573 (1990)Google Scholar
  12. Harris, T. E.: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)Google Scholar
  13. Hassell, M. P., Comins, H. N., May, R. M.: Spatial structure and chaos in insect population dynamics. Nature 353, 255–258 (1991)Google Scholar
  14. Iwasa, Y., Satō, K., Nakashima, S.: Dynamic modeling of wave regeneration (Shimagare) in subalpine Abies forests. J. Theor. Biol. 152, 143–158 (1991)Google Scholar
  15. Iwasa, Y., Satō, K., Kakita, M., Kubo, T.: Modelling biodiversity: Latitudinal gradient of forest species diversity. In: Schulze, E.-D., Mooney, H. (eds.) Biodiversity and ecosystem function. Berlin Heidelberg New York: Springer 1993Google Scholar
  16. Katori, M., Konno, N.: Correlation inequalities and lower bounds for the critical value γc of contact processes. J. Phys. Soc. Jpn. 59, 877–887 (1990)Google Scholar
  17. Katori, M., Konno, N.: Upper bounds for survival probability of the contact process. J. Stat. Phys. 63, 115–130 (1991)Google Scholar
  18. Kawano, K., Iwasa, Y.: A lattice structured model for beech forest dynamics: the effect of understory dwarf bamboo. Ecol. Modelling 66, 261–275 (1993)Google Scholar
  19. Konno, N., Katori, M.: Applications of the CAM based on a new decoupling procedure of correlation functions in the one-dimensional contact process. J. Phys. Soc. Jpn. 59, 1581–1592 (1990)Google Scholar
  20. Liggett, T. M.: Interacting particle systems. Berlin Heidelberg New York: Springer 1985Google Scholar
  21. Ludwig, D., Aronson, D. G., Weinberger, H. F.: Spatial patterning of the spruce budworm. J. Math. Biol. 8, 217–258 (1979)Google Scholar
  22. Matsuda, H.: Conditions for the evolution of altruism. In: Itô, Y., Brown, J. L., Kikkawa, J. (eds.) Animal societies: Theories and facts, pp. 67–80. Tokyo: Japan Sci. Soc. Press 1987Google Scholar
  23. Matsuda, H., Tamachi, N., Sasaki, A., Ogita, N.: A lattice model for population biology. In: Teramoto, E., Yamaguti, M. (eds.) Mathematical topics in population biology, morphogenesis, and neurosciences. (Lect. Notes Biomath., Vol. 71, pp. 154–161) Berlin Heidelberg New York: Springer 1985Google Scholar
  24. Matsuda, H., Ogita, N., Sasaki, A., Satō, K.: Statistical mechanics of population: The lattice Lotka-Volterra model. Prog. Theor. Phys. 88, 1035–1049 (1992)Google Scholar
  25. May, R. M., Anderson, R. M.: Population biology of infectious diseases: Part II. Nature 280, 455–461 (1979)Google Scholar
  26. May, R. M., Anderson, R. M.: Epidemiology and genetics in the coevolution of parasites and hosts. Proc. R. Soc. Lond., Ser. B 219, 281–313 (1983)Google Scholar
  27. May, R. M., Anderson, R. M.: Transmission dynamics of HIV infection. Nature 326, 137–142 (1987)Google Scholar
  28. Mollison, D.: Spatial contact models for ecological and epidemic spread. J. R. Statist. Soc., Ser. B 39, 283–326 (1977)Google Scholar
  29. Mollison, D., Kuulasmaa, K.: Spatial epidemic models: theory and simulations. In: Bacon, P. J. (ed.) Population dynamics of rabies in wildlife, pp. 291–309. London: Academic Press 1985Google Scholar
  30. Nowak, M. A., May, R. M.: Evolutionary games and spatial chaos. Nature 359, 826–829 (1992)Google Scholar
  31. Ootsuki, T., Keyes, T.: Kinetic growth percolation: Epidemic processes with immunization. Phys. Rev. A 33, 1223–1232 (1986)Google Scholar
  32. Satō, K., Iwasa, Y.: Modeling of wave regeneration (Shimagare) in subalpine Abies forests: Population dynamics with spatial structure. Ecology 74, 1538–1550 (1993)Google Scholar
  33. Tainaka, K.: Lattice model for the Lotka-Volterra system. J. Phys. Soc. Jpn. 57, 2588–2590 (1988)Google Scholar
  34. Yachi, S., Kawasaki, K., Shigesada, N. Teramoto, E.: Spatial patterns of propagating waves of fox rabies. Forma 4, 3–12 (1989)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Kazunori Satō
    • 1
  • Hirotsugu Matsuda
    • 1
  • Akira Sasaki
    • 1
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityFukuokaJapan

Personalised recommendations