Journal of Molecular Evolution

, Volume 40, Issue 3, pp 260–272 | Cite as

Mammalian mitochondrial DNA evolution: A comparison of the cytochrome b and cytochrome c oxidase II genes

  • Rodney L. Honeycutt
  • Michael A. Nedbal
  • Ronald M. Adkins
  • Laura L. Janecek


The evolution of two mitochondrial genes, cytochrome b and cytochrome c oxidase subunit II, was examined in several eutherian mammal orders, with special emphasis on the orders Artiodactyla and Rodentia. When analyzed using both maximum parsimony, with either equal or unequal character weighting, and neighbor joining, neither gene performed with a high degree of consistency in terms of the phylogenetic hypotheses supported. The phylogenetic inconsistencies observed for both these genes may be the result of several factors including differences in the rate of nucleotide substitution among particular lineages (especially between orders), base composition bias, transition/transversion bias, differences in codon usage, and different constraints and levels of homoplasy associated with first, second, and third codon positions. We discuss the implications of these findings for the molecular systematics of mammals, especially as they relate to recent hypotheses concerning the polyphyly of the order Rodentia, relationships among the Artiodactyla, and various interordinal relationships.

Key words

Cytochrome b Cytochrome c oxidase II Mammals Mitochondrial DNA Molecular evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci USA 88:10317–10321Google Scholar
  2. Adkins RM, Honeycutt RL (1993) A molecular examination of archontan and chiropteran monophyly. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 227–249Google Scholar
  3. Adkins RM, Honeycutt RL (1994) Evolution of the primate cytochrome c oxidase II gene. J Mol Evol 38:215–231Google Scholar
  4. Allard MW, Ellsworth DL, Honeycutt RL (1991a) The production of single-stranded DNA suitable for sequencing using the polymerase chain reaction. Biotechniques 10:24–26Google Scholar
  5. Allard MW, Miyamoto MM, Honeycutt RL (1991b) Tests for rodent polyphyly. Nature 353:610–611Google Scholar
  6. Allard MW, Honeycutt RL (1992) Nucleotide sequence variation in the mitochondrial 12S rRNA gene and the phylogeny of African molerats (Rodentia: Bathyergidae). Mol Biol Evol 9:27–40Google Scholar
  7. Allard MW, Miyamoto MM, Jarecki L, Kraus F, Tennant MR (1992) DNA systematics and evolution of the artiodactyl family Bovidae. Proc Natl Acad Sci USA 89:3972–3976Google Scholar
  8. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Ro BA, Sange F, Schreie PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465Google Scholar
  9. Anderson S, De Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717Google Scholar
  10. Aquadro CF, Kaplan N, Risko KJ (1984) An analysis of the dynamics of mammalian mitochondrial DNA sequence evolution. Mol Biol Evol 1:423–434Google Scholar
  11. Archie JW (1989) Homoplasy excess ratios: new indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Syst Zool 38:253–269Google Scholar
  12. Arnason U, Gullberg A, Widegren B (1991) The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J Mol Evol 33:556–568Google Scholar
  13. Arnason U, Johnsson E (1992) The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina. J Mol Evol 34:493–505Google Scholar
  14. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180Google Scholar
  15. Black CC (1963) A review of the North American Tertiary Sciuridae. Bull Mus Comp Zool Harvard 130:109–248Google Scholar
  16. Bremer K (1988) The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803Google Scholar
  17. Britten RJ (1986) Rates of DNA sequence evolution differ betweer taxonomic groups. Science 231:1393–1398Google Scholar
  18. Brown WM (1980) Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci USA 77:3605–3609Google Scholar
  19. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239Google Scholar
  20. Bulmer M, Wolfe KH, Sharp PM (1991) Synonymous nucleotide substitution rates in mammalian genes: implications for the molecular clock and the relationship of mammalian orders. Proc Natl Acad Sci USA 88:5974–5978Google Scholar
  21. Carleton MD, Musser GG (1984) Muroid rodents. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. John Wiley & Son, New York, pp 289–379Google Scholar
  22. Catzeflis FM, Aguilar J-P, Jaeger J-J (1992) Muroid rodents: phylogeny and evolution. Tree 7:122–126Google Scholar
  23. Catzeflis FM, Dickerman AW, Michaux J, Kirsch JAW (1993) DNA hybridization and rodent phylogeny. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammalian phylogeny. Springer-Verlag, New York, pp 159–172Google Scholar
  24. DeWalt TS, Sudman PD, Hafner MS, Davis SK (1993) Phylogenetic relationships of pocket gophers (Cratogeomys and Pappogeomys)_ based on mitochondrial DNA cytochrome b sequences. Mol Phyl Evol 2:193–204Google Scholar
  25. Disotell TR, Honeycutt RL, Ruvolo M (1992) Mitochondrial DNA phylogeny of the Old-World monkey tribe Papionini. Mol Biol Evol 9:1–13Google Scholar
  26. Eernisse DJ, Kluge AG (1993) Taxonomic congruence versus total evidence, and ammote phylogeny inferred from fossils, molecules, and morphology. Mol Biol Evol 10:1170–1195Google Scholar
  27. Farris JS (1989) The retention index and resealed consistency index. Cladistics 5:417–419Google Scholar
  28. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410Google Scholar
  29. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791Google Scholar
  30. Flynn LJ, Jacobs LL, Cheema IU (1986) Baluchimyinae, a new ctenodactyloid rodent subfamily from the Miocene of Baluchistan. Am Mus Novitates 2841:1–58Google Scholar
  31. Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisa E, Saccone C (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516Google Scholar
  32. Gentry AW (1992) The subfamilies and tribes of the family Bovidae. Mammal Rev 22:1–32Google Scholar
  33. Grant D (1993) Molecular phylogeny and the higher classification of eutherian mammals. Trends Ecol Evol 8:141–147Google Scholar
  34. Grant D, Hide WA, Li W-H (1991) Is the guinea-pig a rodent? Nature 351:649–652Google Scholar
  35. Grant D, Higgins DG (1994) Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol Biol Evol 11:357–364Google Scholar
  36. Green M, Bjork PR (1980) On the genus Dikkomys (Geomyoidea, Mammalia). Palaeovertebrata, Montpellier, Mem Jubil R Lavocat: 343–353Google Scholar
  37. Holmes ES (1991) Different rates of substitution may produce different phylogenies of the eutherian mammals. J Mol Evol 33:209–215Google Scholar
  38. Honeycutt RL, Adkins RM (1993) Higher level systematics of eutherian mammals: an assessment of molecular characters and phylogenetic hypotheses. Annu Rev Ecol Syst 24:279–305Google Scholar
  39. Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34Google Scholar
  40. Irwin DM, Arnason U (1994) Cytochrome b gene of marine mammals: phylogeny and evolution. J Mamm Evol 2:37–55Google Scholar
  41. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144Google Scholar
  42. Irwin DM, Wilson AC (1992) Limitations of molecular methods for establishing the phylogeny of mammals, with special reference to the position of elephants. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammalian phylogeny. Springer-Verlag, New York, pp 257–267Google Scholar
  43. Janis CM, Scott KM (1987) The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. Am Mus Novit 2893:1–85Google Scholar
  44. Janke A, Feldmaier-Fuchs G, Thomas WK, von Haeseler A, Paabo, S (1994) The marsupial mitochondrial genome and the evolution of placental mammals. Genetics 137:243–256Google Scholar
  45. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  46. Keohavang P, Thilly WG (1989) Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci USA 86:9253–9257Google Scholar
  47. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120Google Scholar
  48. Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst Zool 38:7–25Google Scholar
  49. Kraft R, Tardiff J, Kramer KS, Leinwand LA (1988) Using mini-prep plasmid DNA for sequencing double stranded templates with sequenase. Biotechniques 6:544–547Google Scholar
  50. Kraus F, Miyamoto MM (1991) Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial DNA sequences. Syst Zool 40:117–130Google Scholar
  51. Kumar S, Tamura K, Nei M (1993) MEGA: molecular evolutionary genetics analysis, version 1.02. Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, PennsylvaniaGoogle Scholar
  52. Li W-H (1987) Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J Mol Evol 24:337–345Google Scholar
  53. Li W-H, Hide WA, Zharkikh A, Ma D-P, Graur D (1992) The molecular taxonomy and evolution of the guinea pig. J Hered 83:174–181Google Scholar
  54. Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342Google Scholar
  55. Luckett WP, Hartenberger J-L (1985) Evolutionary relationships among rodents: a multidisciplinary analysis. Plenum Press, New York, pp 1–721Google Scholar
  56. Luckett WP, Hartenberger J-L (1993) Monophyly or polyphyly of the order Rodentia: possible conflict between morphological and molecular interpretations. J Mammal Evol 1:127–147Google Scholar
  57. Ma D-P, Zharkikh A, Grant D, VandeBerg JL, Li W-H (1993) Structure and evolution of opossum, guinea pig, and porcupine cytochrome b genes. J Mol Evol 36:327–334Google Scholar
  58. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091Google Scholar
  59. Mindell DP, Honeycutt RL (1990) Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annu Rev Ecol Syst 21: 541–566Google Scholar
  60. Miyamoto MM, Allard MW, Adkins RM, Janecek LL, Honeycutt RL (1994) A congruence test of reliability using linked mitochondrial DNA sequences. Syst Biol 43:236–249Google Scholar
  61. Miyamoto MM, Kraus F, Laipis PJ, Tanhauser SM, Webb SD (1993) Mitochondrial DNA phylogenies within Artiodactyla. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammalian phylogeny. Springer-Verlag, New York, pp 268–281Google Scholar
  62. Miyamoto MM, Kraus F, Ryder OA (1990) Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc Natl Acad Sci USA 87:6127–6131Google Scholar
  63. Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356:121–125Google Scholar
  64. O'hUigin C, Li W-H (1992) The molecular clock ticks regularly in muroid rodents and hamsters. J Mol Evol 35:377–384Google Scholar
  65. Pesole G, Sbisa E, Mignotte F, Saccone C (1991) The branching order of mammals: phylogenetic trees inferred from nuclear and mitochondrial molecular data. J Mol Evol 33:537–542Google Scholar
  66. Pilgrim GE (1947) The evolution of the buffaloes, oxen, sheep, and goats. J Linnean Soc London (Zoology) 41:272–286Google Scholar
  67. Pumo DE, Phillips CJ, Barcia M, Millan C (1992) Three patterns of mitochondrial DNA nucleotide divergence in the meadow vole, Microtus pennsylvanicus. J Mol Evol 34:163–174Google Scholar
  68. Russell RJ (1968a) Evolution and classification of the pocket gophers of the subfamily Geomyinae. Univ Kansas Pub Mus Nat Hist 16: 473–597Google Scholar
  69. Russell RJ (1968b) Revision of pocket gophers of the genus Pappogeomys. Univ Kansas Pub Mus Nat Hist 16:581–776Google Scholar
  70. Ruvolo M, Disotell TR, Allard MW, Brown WM, Honeycutt RL (1991) Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence. Proc Natl Acad Sci USA 88:1570–1574Google Scholar
  71. Saiki RK, Gelfand DH, Stoeffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491Google Scholar
  72. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  73. Savage DE, Russell DE (1983) Mammalian paleofaunas of the world. Addison-Wesley, Reading, MAGoogle Scholar
  74. Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–8211Google Scholar
  75. Shields DC (1990) Switches in species-specific codon preferences: the influence of mutation biases. J Mol Evol 31:71–80Google Scholar
  76. Sidow A, Wilson AC (1991) Compositional statistics evaluated by computer simulations. In: Miyamoto MM, Cracraft J (eds) Phylogenetic analysis of DNA sequences. Oxford University Press, New York, pp 129–146Google Scholar
  77. Swofford DL (1993) PAUP: phylogenetic analysis using parsimony, version 3.1. Illinois Natural History Survey, Champaign, IllinoisGoogle Scholar
  78. Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285Google Scholar
  79. Tamura K, Nei M (1993) Model selection in the estimation of the number of nucleotide substitutions. Mol Biol Evol 10:512–526Google Scholar
  80. Thomas WK, Martin SL (1993) A recent origin of marmots. Mol Phyl Evol 2:330–336Google Scholar
  81. Tindall KR, Kunkel TA (1988) Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase. Biochemistry 27:6008–6013Google Scholar
  82. Wu C-I, Li W-H (1985) Evidence for higher rates of nucleotide substitutions in rodents than in man. Proc Natl Acad Sci USA 82: 1741–1745Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • Rodney L. Honeycutt
    • 1
  • Michael A. Nedbal
    • 1
  • Ronald M. Adkins
    • 1
  • Laura L. Janecek
    • 1
    • 2
  1. 1.Department of Wildlife & Fisheries SciencesTexas A&M UniversityCollege StationUSA
  2. 2.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenUSA

Personalised recommendations