Climatic Change

, Volume 1, Issue 1, pp 5–20 | Cite as

Climate and energy: A scenario to a 21st century problem

  • H. Flohn


The energy contribution of anthropogenic climatic fluctuations has been estimated to a gain of 15–20 TW, in comparison with a gain or deficit of 100–300 TW from natural processes responsible for the observed climatic fluctuations of the last 200 years. A dominant role of an increase of CO2 by a factor 2–5 in the next century, accompanied by side effects acting in the same direction, seems to be most likely. Under the assumption of constant natural factors anthropogenic warming and its effects on the Arctic sea-ice may successively lead to climatic states as in 1931–60, in the early Middle Age (900–1200) and in the climatic optimum period ca. 5000 BP. Finally it may result in a complete destruction of the Arctic sea-ice with a drastic shift of all climatic belts towards north, extending even to the interior Tropics.


Climatic State 21st Century Dominant Role Natural Process Energy Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Mesarovic and E. Pestel, Menschheit am Wendepunkt. 2. Bericht an den Club of Rome zur Weltlage, Stuttgart 1974, 184 S.Google Scholar
  2. [2]
    H. H. Lamb, Climate: Present, Past and Future, Vol. I, Methuen (London) 1972, 613 pp.Google Scholar
  3. [3]
    M. I. Budyko, Izmenenya Klimata, Gidrometeoizdat, Leningrad 1974, 308 pp.Google Scholar
  4. [4]
    W. N. Hess (ed.), Weather and Climate Modification, J. Wiley, New York 1974, 1025 pp.Google Scholar
  5. [5]
    SMIC Report, ‘Inadvertent Climate Modification’, Report of the Study of Man's Impact on Climate. MIT Press, Cambridge, Mass. 1971, 308 pp.Google Scholar
  6. [6]
    GARP-Report, ‘The Physical Basis of Climate and Climate Modelling’, WMO-GARP Publication Series No. 16, 1975, 263 pp.Google Scholar
  7. [7]
    H. Flohn, ‘Globale Energiebilanz and Klimaschwankungen’. Bonner Meteor. Abhandl. 19, sowie Rhein. Westfäl. Akad. Wiss. Vorträge 234, 75–117 (1973).Google Scholar
  8. [8]
    W. D. Sellers, Physical Climatology, Univ. of Chicago Press, 1965.Google Scholar
  9. [9]
    A. Oort and J. P. Peixoto, ‘The Annual Cycle of the Energetics of the Atmosphere on a Planetary Scale’, J. Geophys. Res. 79, 2705–2719 (1974).Google Scholar
  10. [10]
    J. G. Charney, ‘Dynamics of Deserts and Drought in the Sahel’, Quart. J. Roy. Meteor. Soc. 101, 193–202 (1975); cf. also J. Otterman, Science 186, 531–533 (1974).Google Scholar
  11. [11]
    U.S. Dept. of Transport: ‘Climatic Impact Assessment Program’, Vol. I, II, Washington, D.C., 1975.Google Scholar
  12. [12]
    F. S. Rowland and W. J. Molina, ‘Chlorofluoromethanes in the Environment’, Rev. Geophys. Space Phys. 13, 1–36 (1975).Google Scholar
  13. [13]
    V. Ramanathan, ‘Greenhouse Effect Due to Chlorofluorocarbons: Climatic Implications’, Science 190, 50–52 (1975).Google Scholar
  14. [14]
    R. Eiden and G. Eschelbach, ‘Das atmosphärische Aerosol und seine Bedeutung für den Energiehaushalt der Atmosphäre’, J. Geophys. 39, 189–228 (1973).Google Scholar
  15. [15]
    C. E. Junge, ‘Important Problems of Global Pollution’, IAMAP-IAPSO Assembly, Melbourne 1974; Proc. Intern. Conf. on Structure, Composition and Gen. Circ. of the Upper and Lower Atmosphere and Possible Anthropogenic Perturbations, Vol. I, pp. 1–16.Google Scholar
  16. [16]
    R. Bacastrow and Ch. D. Keeling, ‘Atmospheric Carbon Dioxide and Radiocarbon in the Natural Carbon Cycle: II. Changes from A.D. 1700 to 2070 as Deduced from a Geochemical Model’, in: Carbon and the Biosphere, Proc. 24th Brookhaven Symposium in Biology, 1973, pp. 86–135.Google Scholar
  17. [17]
    K. Zimen and F. K. Altenhein, ‘The Future Burden of Industrial CO2 on the Atmosphere and the Oceans’, Z. Naturf. 28a, 1747–1752 (1973).Google Scholar
  18. [18]
    U. Oeschger et al., ‘A Box Diffusion Model to Study the Carbon Dioxide Exchange in Nature’, Tellus 27, 168–192 (1975).Google Scholar
  19. [19]
    W. W. Kellogg, ‘Mankind as a Factor in Climate Change’, in: E. W. Erickson and L. Waverman (eds.), The Energy Question, an International Failure of Policy, Univ. of Toronto Press 1974, pp. 241–255.Google Scholar
  20. [19a]
    W. W. Kellogg, J. A. Coakley, and G. W. Grams, ‘Effects of Anthropogenic Aerosols on the Global Climate’, Proc. WMO/IAMAP Symposium on Long-Term Climatic Fluctuations, Norwich 1975, WMO No. 421, pp. 323–330.Google Scholar
  21. [20]
    S. Manabe and R. T. Wetherald, ‘Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity’, J. Atmos. Sci. 24, 241–259 (1967).Google Scholar
  22. [21]
    S. Manabe and R. T. Wetherald, ‘The Effects of Doubling the CO2-Concentration on the Climate of a General Circulation Model’, J. Atmos. Sci. 32, 3–15 (1975).Google Scholar
  23. [22]
    S. H. Schneider, ‘On the Carbon Dioxide-Climate Confusion’, J. Atmos. Sci. 32, 2060–2066 (1975).Google Scholar
  24. [23]
    S. H. Schneider and R. E. Dickinson, ‘Climate Modeling,’ Rev. Geophys. Space Phys. 12, 447–494 (1974).Google Scholar
  25. [24]
    W. W. Kellogg, ‘Climatic Feedback Mechanism Involving the Polar Regions’, in: G. Weller and S. A. Bowling (eds.), Climate of the Arctic. 24th Alaska Science Conference, Fairbanks, Alaska 1973, pp. 111–116.Google Scholar
  26. [25]
    G. J. Kukla and H. J. Kukla, ‘Increased Surface Albedo in the Northern Hemisphere’, Science 183, 709–714 (1974).Google Scholar
  27. [26]
    D. R. Wiesnet and M. Matson: ‘Monthly Winter Snowline Variation in the Northern Hemisphere from Satellite Records, 1966–75’, TOAA. Techn. Mem. NESS 74 (Nov. 1975).Google Scholar
  28. [27]
    H. Dronia, ‘Über Temperaturänderungen der freien Atmosphäre auf der Nordhalbkugel in den letzten 25 Jahren’, Meteor. Rundsch. 27, 166–174 (1974).Google Scholar
  29. [27a]
    T. Asakura, ‘Report of a Study on Recent Unusual Weather and Climatic Trend in the World and the Outlook for the Future’, Japan Meteor. Agency, June 1974, 13 pp.Google Scholar
  30. [28]
    R. Bryson, ‘A Perspective on Climate Change’, Science 184, 753–760 (1974).Google Scholar
  31. [29]
    H. Flohn, ‘Das Wasser als Grundlage unserer Ernährung: Wasserhaushalt und Wasserverbrauch’, Ernährungs-Umschau 21, Heft 1, 9–13 (1974).Google Scholar
  32. [30]
    W. W. Kellogg, ‘Climatic Non-Limits to Growth’, Proc. Symp. Atmosphere Quality and Climatic Change, Univ. of N. Carolina, Chapel Hill 1975 (in print).Google Scholar
  33. [31]
    U.S. GARP Committee: ‘Understanding Climatic Change, a Program for Action’, Nat. Acad. Sci., Washington 1975, 239 pp.Google Scholar
  34. [32]
    W. S. Broecker, ‘Climatic Change: Are we on the Brink of a Pronounced Global Warming?’ Science 189, 460–463 (1975).Google Scholar
  35. [33]
    M. Schwarzbach, Das Klima der Vorzeit, F. Enke, Stuttgart, 3. Aufl. 1974, 380 S.Google Scholar
  36. [34]
    H. Flohn. ‘Background of a Geophysical Model of the Initiation of the Next Glaciation’, Quart. Res. 4, 385–404 (1974).Google Scholar
  37. [35]
    J. T. Andrews et al., ‘The Laurentide Ice Sheet: Problems of the Mode and Speed of Inception’, Proc. WMO/IAMAP Symposium on Long-Term Climatic Fluctuations, Norwich 1975, WMO No. 421, 87–94.Google Scholar
  38. [36]
    J. P. Kennett and R. C. Thunell, ‘Global Increase in Quaternary Explosive Volcanism’, Science 187, 497–503 (1975).Google Scholar
  39. [37]
    H. Flohn, ‘Abrupt Events in Climatic History’, Lecture given at the Australian Conference on Climatic Change, Melbourne, 8–12 Dec. 1975.Google Scholar
  40. [38]
    K. Aagaard and L. K. Coachman, ‘Toward an Ice-Free Arctic Ocean’, EOS Transact. Americ. Geophys. Union 1975, pp. 484–487.Google Scholar
  41. [39]
    G. A. Maykut and N. Untersteiner, ‘Some Results from a Time-dependent Thermodynamic Model of Sea-Ice’, J. Geophys. Res. 76, 1550–1575 (1971).Google Scholar
  42. [40]
    J. O. Fletcher et al., ‘Numerical Simulation of the Influence of the Arctic Sea-Ice on Climate’, WMO Techn. Note 129, 1973, pp. 181–218.Google Scholar
  43. [41]
    R. L. Newson, ‘Response of a General Circulation Model of the Atmosphere to Removal of the Arctic Ice-Cap’, Nature 241, 39–40 (1973).Google Scholar
  44. [42]
    J. Smagorinsky, ‘General Circulation Experiment with the Primitive Equations’ (Appendix B). Monthly Weather Review 91, 159–162 (1963).Google Scholar
  45. [43]
    H. C. Korff and H. Flohn, ‘Zusammenhang zwischen dem Temperatur-Gefälle Äquator-Pol und den planetarischen Luftdruckgürteln’, Ann. Meteor. N.F. 4 163–164 (1969).Google Scholar
  46. [44]
    L. R. Rakipova, ‘On the Influence of the Artic Ice on the Zonal Distribution of Atmospheric Temperature’, Proc. Symp. Arctic Heat Budget and Atmospheric Circulation, RAND Memo RM 5233 (1966), pp. 411–441.Google Scholar
  47. [45]
    W. Häfele, ‘A Systems Approach to Energy’, Amer. Scientist 62, 438–447 (1974); see also Science 184, 360–367 (1974).Google Scholar
  48. [46]
    S. H. Schneider and R. D. Dennett, ‘Climatic Barriers to Long-Term Energy Growth’, AMBIO, Stockholm 1975, pp. 65–74.Google Scholar
  49. [47]
    A. L. Hammond, W. D. Metz, and Th.H. Maugh, ‘Energy and the Future’, Assoc. Adv. Science, Washington D.C., 1973, 184 pp.Google Scholar
  50. [48]
    St. R. Hanna and F. A. Gifford, ‘Meteorological Effects of Energy Dissipation at Large Power Parks’, Bull. Amer. Meteor. Soc. 56, 1069–1076 (1975).Google Scholar
  51. [49]
    Kl. Meyer-Abich, ‘Wertsetzung bei beschränkten Ressourcen’, in: J. Wolff (ed.), Wirtschaftspolitik in der Umwelt, DVA Stuttgart 1974, S. 120–158.Google Scholar
  52. [50]
    Kl. Meyer-Abich, ‘Kurzfristig Kernenergie - langfristig Sonnenenergie’, Manuskript (1975).Google Scholar

Copyright information

© D. Reidel Publishing Company 1977

Authors and Affiliations

  • H. Flohn
    • 1
  1. 1.Meteorologisches Institut der Universität BonnGermany

Personalised recommendations