Documenta Ophthalmologica

, Volume 3, Issue 1, pp 289–306 | Cite as

Brightness, visual acuity and colour blindness

  • Selig Hecht


  1. 1.

    Measurements have been made of the dark-adapted foveal threshold of normal and colour blind persons in five parts of the spectrum using a 1° circular test field.

  2. 2.

    Compared to normals, protanopes (red-blinds) show an elevation of the threshold which increases slowly from blue to yellow and rises rapidly thereafter until in the red the threshold is more than ten times as high as normal. Deuteranopes (greenblinds) do not show so high an elevation, their maximum in the green being only about 70% above normal.

  3. 3.

    These threshold elevations correspond to luminosity losses in the spectrum. For the protanope the total loss in the spectrum is nearly one-half of the normal luminosity; for the deuteranope it is nearly two-fifths of normal.

  4. 4.

    Measurements were made of the illumination necessary for equal visual performance in normal and colour blind subjects. It was found that protanopes require 119% and deuteranopes 55% more light to achieve a visual acuity of 0.29 reciprocal minutes. These values agree closely with those found in the luminosity measurements.

  5. 5.

    Such losses support the idea that colour blindness corresponds to the loss of one of the three receptor systems usually postulated to account for normal colour vision. However, the colour sensations reported by colour blind persons, especially monocular colour blinds, do not support the idea of a lost or inactivated receptor system. A fresh explanation for colour blindness is needed to reconcile these conflicting kinds of evidence.



Visual Acuity Blindness Total Loss Receptor System Colour Vision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abney, W. de W., (1913). Researches in colour vision and the trichromatic theory, London; Longmans Green.Google Scholar
  2. Chapanis, A. (1947). J. gen. Physiol., 30, 423.Google Scholar
  3. Dalton, J. (1798). Mem. Lit. Phil. Soc., Manchester. 5, 28.Google Scholar
  4. Dieter, W. (1927). Z. Sinnesphysiol. 58, 73.Google Scholar
  5. Fick, A., (1879). Die Lehre von der Lichtemfindung, in Handbuch der Physiologie, (L. Hermann, editor), 3, pt., 1, 139, Leipzig, Vogel.Google Scholar
  6. Gibson, K. S. & Tyndall, E. P. T. (1923). B. S., Scient. Papers, 19, 131.Google Scholar
  7. Hecht, S. (1928). Proc. Nat. Acad. Sci. 14, 237.Google Scholar
  8. Hecht, S. (1931). J. opt. Soc. Amer. 21, 615.Google Scholar
  9. Hecht, S. (1936). J. gen. Physiol. 20, 57.Google Scholar
  10. Hecht, S. & Shlaer, S. (1936). J. gen. Physiol. 20, 83.Google Scholar
  11. Hecht, S. & Shlaer, S. (1938). J. opt. Soc. Amer. 28, 269.Google Scholar
  12. Ives, H. E. (1923). J. Franklin Inst. 195, 23.Google Scholar
  13. von Kries, J. (1919). Z. Sinnesphysiol. 50, 137.Google Scholar
  14. Lythgoe, R. J. (1932). Med. Res. Coun. Spec. Rep. Series, No. 173.Google Scholar
  15. Pitt. F. H. G., (1935). Med. Res. Coun. Spec. Rep. Series, No. 200.Google Scholar
  16. Pitt, F. H. G., (1944). Proc. Roy. Soc. B. 132, 101.Google Scholar
  17. Shlaer, S. (1937). J. gen. Physiol. 21, 165.Google Scholar
  18. Shlaer, S. (1938). J. opt. Soc. Amer. 28, 18.Google Scholar
  19. Stiles, W. S. & Crawford, B. H., (1933). Proc. Roy. Soc. B, 112, 428.Google Scholar
  20. Wald, G. (1945). Science. 101, 653.Google Scholar
  21. Wright, W. D. (1929–30). Trans. opt. Soc. London. 31, 201.Google Scholar
  22. Young, T., (1807). On the theory of light and colours, in Lectures in Natural Philosophy, 2, 613. London; Joseph Johnson.Google Scholar

Copyright information

© Uitgeverij Dr W. Junk 1949

Authors and Affiliations

  • Selig Hecht
    • 1
  1. 1.Laboratory of Biophysics, Columbia UniversityNew York City

Personalised recommendations