Statistics and Computing

, Volume 6, Issue 2, pp 127–130 | Cite as

A hybrid EM/Gauss-Newton algorithm for maximum likelihood in mixture distributions

  • Murray Aitkin
  • Irit Aitkin
Papers

Abstract

A faster alternative to the EM algorithm in finite mixture distributions is described, which alternates EM iterations with Gauss-Newton iterations using the observed information matrix. At the expense of modest additional analytical effort in obtaining the observed information, the hybrid algorithm reduces the computing time required and provides asymptotic standard errors at convergence. The algorithm is illustrated on the two-component normal mixture.

Keywords

Mixtures maximum likelihood Gauss-Newton EM algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitkin, M. (1980) Mixture applications of the EM algorithm in GLIM. In COMPSTAT 1980. Physica-Verlag, Vienna.Google Scholar
  2. Dempster, A. P., Laird, N. M. and Rubin, D. A. (1977) Maximum likelihood estimation from incomplete data via the EM algorithm (with Discussion). J. Roy. Statist. Soc. B, 39, 1–38.Google Scholar
  3. Everitt, B. S. (1984) Maximum likelihood estimation of the parameters in a mixture of two univariate normal distributions: a comparison of different algorithms. The Statistician, 33, 205–15.Google Scholar
  4. Louis, T. A. (1982) Finding the observed information when using the EM algorithm. J. Roy. Statist. Soc. B, 44, 226–33.Google Scholar
  5. Meilijson, I. (1989) A fast improvement to the EM algorithm on its own terms. J. Roy. Statist. Soc. B, 51, 127–38.Google Scholar
  6. McLachlan, G. J. and Basford, K. (1988) Mixture Models: Inference and Applications to Clustering. Dekker, New York.Google Scholar
  7. Meng, X.-L. and Rubin, D. R. (1991) Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. J. Amer. Statist. Assoc., 86, 899–909.Google Scholar
  8. Redner, R. A. and Walker, H. F. (1984) Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26, 195–239.Google Scholar
  9. Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985) Statistical Analysis of Finite Mixture Distributions. Wiley, Chichester.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Murray Aitkin
    • 1
    • 2
  • Irit Aitkin
    • 3
  1. 1.Department of MathematicsUniversity of Western AustraliaWestern AustraliaAustralia
  2. 2.Department of StatisticsUniversity of Newcastle Upon TyneNewcastle Upon TyneUK
  3. 3.Department of Epidemiology and BiostatisticsSchool of Public Health, Curtin University of TechnologyBentleyAustralia

Personalised recommendations