Documenta Ophthalmologica

, Volume 77, Issue 3, pp 213–224 | Cite as

Influence of a twofold voluntary hyperventilation on visually evoked cortical potentials and human pupillogram

  • Velu S. Gavriysky


We studied the direct and aftereffects of twofold hyperventilation (HV) on pattern reversing VEPs and pupillograms (PGs) of 19 healthy volunteers. The VEP-N80 and P100 latencies increased during HV. Both peak times were maintained for a longer period, up to 20 minutes after HV-2 ended. In addition, the PG-latency time during HV and the PG-construction time during and after HV were increased. The results indicated a temporary delay of neural afferent transmission in the visual system during and after HV. A similar delay of the nervous transmission appeared in the efferent part of the system regulating the pupillary movements after HV ended. The observed changes of the VEP and PG parameters most probably resulted from the hypocapnia cased by HV and its effect on the brain vessels, although other explanations for the changes of the VEP- and PG-parameters may have been possible.

Key words

Hyperventilation hypocapnia hypoxia pupillogram visually evoked potentials 


  1. 1.
    Dodt E. Elektrophysiologische Topodiagnostik visueller Störungen. Ergebn exper Med 1982; 41: 299–306.Google Scholar
  2. 2.
    Ivanitzkij AM. Brain mechanisms for signal estimation. Moskow: Medicine, 1976 (Russ.).Google Scholar
  3. 3.
    Shagass C. Evoked brain potentials in psychiatry. Moskow: Mir, 1975.Google Scholar
  4. 4.
    Gavriysky V. Visually evoked potentials and physical loading. Questions of the Physical Culture 1976; 4: 223–8 (Bulg.).Google Scholar
  5. 5.
    Zenkov LR, Losev NI, Melnichuck VP, Radzevich TE. Changes of the VEP-amplitude by hyprventilation at healthy and epileptic humans. Human physiology 1976; 2: 208–14 (Russ.).Google Scholar
  6. 6.
    Drischel H. Untersuchungen über die Dynamik des Lichtreflexes der menschlichen Pupille. I und II Mitteilung Pflüg Arch 1957; 264: 145–190.Google Scholar
  7. 7.
    Drischel H. Neues über die Pupille. Sitzungsber. Sächs Akad der Wissensch Leipzig (Akad Verlag, Berlin) 1983; 116/5: 1–30.Google Scholar
  8. 8.
    Löwenstein O., Loewenfeld I. The Pupil. In: Davson H, ed. The eye. New York-London: Academic Press, 1969: 255–337.Google Scholar
  9. 9.
    Albrecht H, Bruhn R, Lorenz D, Lücker PW, Schumacher M. Pupillometrie: Eine nicht-invasive pharmakokinetische und pharmakodynamische Untersuchungsmethode zur Wirkung von Trospiumchlorid (Spasmo-lyt®) an der glatten Muskulatur. Meth Find Exper Clin Pharmacol 1983; 5(8): 585–7.Google Scholar
  10. 10.
    Grünberger J, Linzmayer L, Cepko H, Saletu B. Pupillometrie im psychopharmakologischen Experiments. Arzneimittel-Forschung/Drug Res 1986; 36(1): 141–6.Google Scholar
  11. 11.
    Loewenfeld I. Supra-spinale Hemmung. Mechanismus und geschichtliche Entwicklung. In: Die normale und die gestörte Pupillenbewegungen, Symp der DOG, 1972. München: Bergmann Verlag, 1973: 115–45.Google Scholar
  12. 12.
    Appenzeller O. The normal pupil and some pupillary abnormalities. In: Appenzeller O. The Autonomic Nervous System. Amsterdam-Oxford-New York: North-Holland Publ. 1976: 223–6.Google Scholar
  13. 13.
    Ohtsuka K, Asakura K, Kawasaki H, Sawa M. Respiratory fluctuations of the human pupil. Exper Brain Res 1988; 71: 215–7.Google Scholar
  14. 14.
    Alexandridis E. Pupillographie. Heidelberg: Hüthig Verlag, 1971.Google Scholar
  15. 15.
    Alexandridis E, Krastel H, Reuter R. In wieweit sind die Pupillenlichtreflexe bei der korticalen Amaurose gestört? Fortschr Ophthal 1983; 80: 79–82.Google Scholar
  16. 16.
    Martin J. Notions de base en mathematiques et statistiques. Paris: Gauthier-Villars, 1967.Google Scholar
  17. 17.
    Sanders EAC, Volkers ACW, v.d. Poel JC, van Lith GHM. Visual functions and pattern VER in optic neuritis. Brit J Ophthal 1987; 71(8): 602–8.Google Scholar
  18. 18.
    Spekreijse H. Pattern evoked potentials: principles, methodology and phenomenology. Proc Intern Evok Poten, Symp Nottimgam, 1980: 55–74.Google Scholar
  19. 19.
    Araki S, Murata K, Aono H. Central and peripheral nervous system dysfunction in workers exposed to lead, zinc and copper. Int Arch Occup Envir Health 1987; 59: 177–87.Google Scholar
  20. 20.
    Riemslag FCC, Spekreijse H, van Walbeek H. Pattern reversal and appearance-disappearance responses in MS patients. Doc Ophthalmol Proc Ser 1981; 27: 215–21.Google Scholar
  21. 21.
    Yamazaki H. Pattern VECP-waveforms and spatial frequency characteristics in children. Doc Ophthalmol 1988; 70: 59–65.Google Scholar
  22. 22.
    Davies HD, Carrol WM, Mastaglia FL. Effects of hyperventilation on pattern-reversal visual evoked potentials in patients with demyelination. J Neurol Neurosung Psychiat 1986; 49: 1392–6.Google Scholar
  23. 23.
    Cliff RA. Chronic hyperventilation and its treatment by physiotherapy: discussion paper. J Royal Soc Med 1984; 77: 855–62.Google Scholar
  24. 24.
    Kraaier V, van Huffeln AC, Wieneke GH. Changes in quantitative EEG a. Blood flow velocity due to standardized hyperventilation: a model of transient ischaemia in young human subjects. EEG Clin Neurophysiol 1988; 70: 377–87.Google Scholar
  25. 25.
    Witzleb E. Function of the vascular system. In: Schmidt RF, Thews G, ed. Human Physiology, Vol. 3. Berlin-Heidelberg-New York: Springer Verlag, 1983: 176–82.Google Scholar
  26. 26.
    Georgiev V, Kisselkova E, Mihailov V. Influence of hyperventilation and apnea on rheoencephalographic-parameters of brain circulation. Question of the Physical Culture 1988; 10: 22–8 (Bulg.).Google Scholar
  27. 27.
    Gavriysky V. VEPs during apnea and hyperventilation. IV Nat Congress Physiol Sci 1986, Summaries, 43 (Bulg.).Google Scholar
  28. 28.
    Vein AM, Moldovanu IV. Hyperventilation and brain functions. In: Vein AM, Moldovanu IV. Neurogenic Hyperventilation. Kishinev: Stiynza, 1988: 96–108 (Russ.).Google Scholar
  29. 29.
    Kappers, JA. Die zentrale Regulierung der normalen Pupillenbewegung. In: Die normale und die gestörte Pupillenbewegungen, Symp der DOG, 1972. München, Bergmann Verlag, 1983: 2–9.Google Scholar
  30. 30.
    George DT, Nutt DJ, Walker WV, Porges SW, Adinoff B, Linnoila M. Lactate and hyperventilation substantially attenuate vagal tone in normal volunteers. Arch Gen Psychiatry 1989; 46: 153–6.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Velu S. Gavriysky
    • 1
  1. 1.Department of Physiology and BiochemistryNational Sports AcademySofiaBulgaria

Personalised recommendations