Advertisement

Journal of Molecular Evolution

, Volume 35, Issue 4, pp 304–317 | Cite as

Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: Loss or accelerated sequence evolution of tRNA and ribosomal protein genes

  • Kenneth H. Wolfe
  • Clifford W. Mordent
  • Stephanie C. Ems
  • Jeffrey D. Palmer
Article

Summary

The vestigial plastid genome of Epifagus virginiana (beechdrops), a nonphotosynthetic parasitic flowering plant, is functional but lacks six ribosomal protein and 13 tRNA genes found in the chloroplast DNAs of photosynthetic flowering plants. Import of nuclear gene products is hypothesized to compensate for many of these losses. Codon usage and amino acid usage patterns in Epifagus plastic genes have not been affected by the tRNA gene losses, though a small shift in the base composition of the whole genome (toward A + T -richness) is apparent. The ribosomal protein and tRNA genes that remain have had a high rate of molecular evolution, perhaps due to relaxation of constraints on the translational apparatus. Despite the compactness and extensive gene loss, one translational gene (infA, encoding initiation factor 1) that is a pseudogene in tobacco has been maintained intact in Epifagus.

Key words

tRNAs ribosomal proteins plastid translation accelerated evolution gene loss codon usage Epifagus virginiana 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andachi Y, Yamao F, Muto A, Osawa S (1989) Codon recognition patterns as deduced from sequences of the complete set of transfer RNA species in Mycoplasma capricolum. Resemblance to mitochondria. J Mol Biol 209:37–54Google Scholar
  2. Baldauf SL, Palmer JD (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344:262–265Google Scholar
  3. Borst P, Grivell LA (1981) Small is beautiful—portrait of a mitochondrial genome. Nature 290: 443–444Google Scholar
  4. Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer, Sunderland, MA, pp 62–88Google Scholar
  5. Butler JS, Springer M, Grunberg-Manago M (1987) AUU-toAUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo. Proc Natl Acad Sci USA 84:4022–4025Google Scholar
  6. Cann RL, Brown WM, Wilson AC (1984) Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106:479–499Google Scholar
  7. dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339Google Scholar
  8. Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrangements in reconstructing plant phylogeny. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chapman and Hall, New York, pp 14–35Google Scholar
  9. Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD (1991) Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10:3073–3078Google Scholar
  10. Gray MW, Boer PH (1988) Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Phil Trans Roy Soc Lond Ser B 319:135–147Google Scholar
  11. Hancock K, Hajduk SL (1990) The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded. J Biol Chem 265: 19208–19215Google Scholar
  12. Harris EH, Gillham NW, Boynton JE (1993) Chloroplast ribosomes: genetics, biogenesis and evolutionary relationships. Microbiol Rev, submittedGoogle Scholar
  13. Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds) (1990) The ribosome. Am Soc Microbiol, Washington, DC, pp 1–678Google Scholar
  14. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete nucleotide sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194Google Scholar
  15. Hoch B, Maier RM, Appel K, Igloi GL, Koessel H (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353:178–180Google Scholar
  16. Isono K, Isono S (1976) Lack of ribosomal protein S1 in Bacillus stearothermophilus. Proc Nall Acad Sci USA 73:767–770Google Scholar
  17. Joyce PBM, Gray MW (1989) Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res 17:5461–5476Google Scholar
  18. Kudla J, Igloi GL, Metzlaff M, Hagemann R, Koessel H (1992) RNA editing in tobacco chloroplasts leads to the formation of a translatable psbL mRNA by a C to U substitution within the initiation codon. EMBO J 11:1099–1103Google Scholar
  19. Li W-H, Wu C-I, Luo C-C (1985) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174Google Scholar
  20. Marechal-Drouard L, Weil J-H, Guillemaut P (1988) Import of several tRNAs from the cytoplasm into the mitochondria in bean Phaseolus vulgaris. Nucleic Acids Res 16:4777–4788Google Scholar
  21. Martin RP, Schneller J-M, Stahl AJC, Dirheimer G (1979) Import of nuclear deoxyribonucleic acid coded lysin-accepting transfer ribonucleic acid (anticodon C-U-U) into yeast mitochondria. Biochemistry 18:4600–4605Google Scholar
  22. Martin W, Lagrange T, Li YF, Bisanz-Seyer C, Mache R (1990) Hypothesis for the evolutionary origin of the chloroplast ribosomal protein L21 of spinach. Curr Genet 18:553–556Google Scholar
  23. Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:5–30Google Scholar
  24. Morden CW, Wolfe KH, dePamphilis CW, Palmer JD (1991) Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudo genes. EMBO J 10:3281–3288Google Scholar
  25. Nagano Y, Ishikawa H, Matsuno R, Sasaki Y (1991) Nucleotide sequence and expression of the ribosomal protein L2 gene in pea chloroplasts. Plant Mol Biol 17:541–545Google Scholar
  26. Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481Google Scholar
  27. Ohto C, Torazawa K, Tanaka M, Shinozaki K, Sugiura M (1988) Transcription of ten ribosomal protein genes from tobacco chloroplasts: a compilation of ribosomal protein genes found in the tobacco chloroplast genome. Plant Mol Biol 11: 589–600Google Scholar
  28. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete nucleotide sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574Google Scholar
  29. Okimoto R, Wolstenholme DR (1990) A set of RRNAs that lack either the TψC arm or the dihydrouridine arm: towards a minimal tRNA adaptor. EMBO J 9:3405–3411Google Scholar
  30. Osawa S, Ohama T, Yamao F, Muto A, Jukes TH, Ozeki H, Umesono K (1988) Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous two-codon sets. Proc Natl Acad Sci USA 85:1124–1128Google Scholar
  31. Ozeki H, Ohyama K, Inokuchi H, Fukuzawa H, Kohchi T, Sano T, Nakahigashi K, Umesono K (1987) Genetic system of chloroplasts. Cold Spring Harbor Symp Quant Biol 52:791–804Google Scholar
  32. Pfanner N, Pfaller R, Nupert W (1988) How finicky is mitochondria protein import? Trends Biochem Sci 13:165–167Google Scholar
  33. Pfitzinger H, Guillemaut P, Weil J-H, Pillay DTN (1987) Adjustment of the tRNA population to the codon usage in chloroplasts. Nucleic Acids Res 15:1377–1386Google Scholar
  34. Pritchard AE, Seilhamer JE, Mahalingham R, Sable CL, Venuti SE, Cummings DJ (1990) Nucleotide sequence of the mitochondrial genome of Paramecium. Nucleic Acids Res 18: 173–180Google Scholar
  35. Schimmel P (1991) RNA minihelices and the decoding of genetic information. FASEB J 5:2180–2187Google Scholar
  36. Schulman LH, Pelka H (1988) Anticodon switching changes the identity of methionine and valine transfer RNAs. Science 242:765–768Google Scholar
  37. Schuster W, Wissinger B, Hiesel R, Unseld M, Gerold E, Knoop V, Marchfelder A, Binder S, Schobel W, Scheike R, Gronger P, Ternes R, Brennicke A (1991) Between DNA and protein—RNA editing in plant mitochondria. Physiol Plant 81: 437–445Google Scholar
  38. Shih M-C, Lazar G, Goodman HM (1986) Evidence in favor of the symbiotic origin of chloroplasts: primary structure and evolution of tobacco glyceraldehyde-3-phosphate dehydrogenases. Cell 47:73–80Google Scholar
  39. Shinozaki K, Ohme M, Tanaka T, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049Google Scholar
  40. Sijben-Mueller G, Hallick RB, Alt J, Westhoff P, Herrmann RG (1986) Spinach plastid genes coding for initiation factor IF-1, ribosomal protein 811 and RNA polymerase alpha-subunit. Nucleic Acids Res 14:1029–1044Google Scholar
  41. Simpson AM, Suyama Y, Dewes H, Campbell DA, Simpson L (1989) Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res 17:5427–5445Google Scholar
  42. Sprinzl M, Hartmann T, Weber J, Blank J, Zeidler R (1989) Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 17 (suppl):r1-r172Google Scholar
  43. Steinmetz A, Weil J-H (1986) Isolation and characterization of chloroplast and cytoplasmic transfer RNAs. Methods Enzymol 118:212–231Google Scholar
  44. Subramanian AR, Stahl D, Prombona A (1991) Ribosomal proteins, ribosomes, and translation in plastids. In: Bogorad L, Vasil IK (eds) Molecular biology of plastids, vol 7A of Vasil IK (ed-in-chief), Cell culture and somatic cell genetics of plants. Academic Press, San Diego, pp 191–215Google Scholar
  45. Sugiura M (1987) Structure and function of the tobacco chloroplast genome. Bot Mag Tokyo 100:407–436Google Scholar
  46. Sugiura M, Shinozaki K, Zaita N, Kusuda M, Kumano M (1986) Clone bank of the tobacco (Nicotiana tabacum) chloroplast genome as a set of overlapping restriction endonuclease fragments: mapping of eleven ribosomal protein genes. Plant Sci 44:211–216Google Scholar
  47. Surguchov AP (1987) Common genes for mitochondrial and cytoplasmic proteins. Trends Biochem Sci 12:335–338Google Scholar
  48. Taylor GW, Wolfe KH, Mordent CW, dePamphilis CW, Palmer JD (1991) Lack of a functional plastid tRNACys gene is associated with loss of photosynthesis in a lineage of parasitic plants. Curr Genet 20:515–518Google Scholar
  49. Timmis JN, Scott NS (1983) Sequence homology between spinach nuclear and chloroplast genomes. Nature 305:65–67Google Scholar
  50. Tingey SV, Tsai FY, Edwards JW, Walker EL, Coruzzi GM (1988) Chloroplast and cytoplasmic glutamine synthetase are encoded by homologous nuclear genes which are differentially expressed in vivo. J Biol Chem 263:9651–9657Google Scholar
  51. Toukifimpa R, Romby P, Rozier C, Ehresmann C, Ehresmann B, Mache R (1989) Characterization and footprint analysis of two 5S rRNA binding proteins from spinach chloroplast ribosomes. Biochemistry 28:5840–5846Google Scholar
  52. Wakasugi T, Ohme M, Shinozaki K, Sugiura M (1986) Structures of tobacco chloroplast genes for tRNAIle (CAU), tRNALeu (CAA), tRNACys (GCA), tRNASer (UGA) and tRNAThr (GGU): a compilation of tRNA genes from tobacco chloroplasts. Plant Mol Biol 7:385–392Google Scholar
  53. Walsh MA, Rechel EA, Popovich TM (1980) Observations on plastid fine-structure in the holoparasitic angiosperm Epifagus virginiana. Am J Bot 67:833–837Google Scholar
  54. Wegloehner W, Subramanian AR (1991) A heptapeptide repeat contributes to the unusual length variation of chloroplast ribosomal protein S18. FEBS Lett 279:193–197Google Scholar
  55. Wimpee CF, Morgan R, Wrobel R (1992) An aberrant plastid ribosomal RNA gene cluster in the root parasite Conopholis americana. Plant Mol Biol 18:275–285Google Scholar
  56. Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058Google Scholar
  57. Wolfe KH, Morden CW, Palmer JD (1992a) Small single-copy region of plastid DNA in the non-photosynthetic angiosperm Epifagus virginiana contains only two genes: differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus. J Mol Biol 223:95–104Google Scholar
  58. Wolfe KH, Katz-Downie DS, Morden CW, Palmer JD (1992b) Evolution of the plastid ribosomal RNA operon in a nongreen parasitic plant: accelerated sequence evolution, altered promoter structure, and tRNA pseudogenes. Plant Mol Biol 18:1037–1048Google Scholar
  59. Yokoi F, Vassileva A, Hayashida N, Torazawa N, Wakasugi T, Sugiura M (1990) Chloroplast ribosomal protein L32 is encoded in the chloroplast genome. FEBS Lett 276:88–90Google Scholar
  60. Yokoi F, Tanaka M, Wakasugi T, Sugiura M (1991) The chloroplast gene for ribosomal protein CL23 is functional in tobacco. FEBS Lett 281:64–66Google Scholar
  61. Ziaie Z, Suyama Y (1987) The cytochrome oxidase subunit I gene of Tetrahymena: a 57 amino acid NH2- terminal extension and a 108 amino acid insert. Curr Genet 12:357–368Google Scholar
  62. Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Ann Rev Plant Physiol 38:391–418Google Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • Kenneth H. Wolfe
    • 1
  • Clifford W. Mordent
    • 1
  • Stephanie C. Ems
    • 1
  • Jeffrey D. Palmer
    • 1
  1. 1.Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations