Journal of Molecular Evolution

, Volume 36, Issue 3, pp 282–289

The giant panda is closer to a bear, judged by α- and β-hemoglobin sequences

  • Tetsuo Hashimoto
  • Eiko Otaka
  • Jun Adachi
  • Keiko Mizuta
  • Masami Hasegawa


Using α- and β-hemoglobin sequences, we made a maximum likelihood inference as to the phylogenetic relationship among carnivores, including the two pandas, giant and lesser. Molecular phylogenetic studies up to 1985 had consistently indicated that the giant panda is more closely related to the bear than to the lesser panda. In 1986, however, a contradictory tree was constructed, using hemoglobins and so on, in which the two pandas link together (Tagle et al. 1986). In contrast to that tree, our conclusion supports the close relationship between bear and giant panda. The surface impression of a close relationship between the two pandas drawn from pairwise amino acid differences is explained by a rapid rate of hemoglobin evolution in the bear compared to that in the two pandas.

Key words

Ailuropoda melanoleuca Giant panda Carnivores Hemoglobin Maximum likelihood Protein phylogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi J, Hasegawa M (1992a) Computer Science Monographs, No 27, MOLPHY: Programs for molecular phylogenetics I—PROTML: Maximum likelihood inference of protein phylogeny. Institute of Statistical Mathematics, TokyoGoogle Scholar
  2. Adachi J, Hasegawa M (1992b) Amino acid substitution of proteins coded for in mitochondrial DNA during mammalian evolution. Jap J Genet 67:187–197Google Scholar
  3. Adachi J, Hasegawa M (1992b) Amino acid substitution of proteins coded for in mitochondrial DNA during mammalian evolution. Jap J Genet 67:187–197Google Scholar
  4. Brimhall B, Stangland K, Jones RT, Becker RR, Bailey TJ (1978) Amino acid sequence of the hemoglobin of raccoon (Procyon lotor). Hemoglobin 2:351–370Google Scholar
  5. Czelusniak J, Goodman M, Moncrief ND, Kehoe SM (1990) Maximum parsimony approach to construction of evolutionary trees from aligned homologous sequences. Methods Enzymol 183:601–615Google Scholar
  6. Czelusniak J, Goodman M, Koop BF, Tagle DA, Shoshani J, Braunitzer G, Kleinschmidt TK, de Jong WW, Matsuda G (1991) Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of eutheria. In: Genoways HH (ed) Current mammalogy vol 2. Plenum, New York, pp 545–572Google Scholar
  7. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Washington DC, pp 345–352Google Scholar
  8. Felsenstein J (1978) Cases in which parsimony and compatibility methods will be positively misleading. Syst Zool 27:401–410Google Scholar
  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376Google Scholar
  10. Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in lemur. J Mol Evol 31:113–121Google Scholar
  11. Hasegawa M, Kishino H, Saitou N (1991) On the maximum likelihood method in molecular phylogenetics. J Mol Evol 32: 443–445Google Scholar
  12. Hasegawa M, Cao Y, Adachi J, Yano T (1992) Rodent polyphyly? Nature 355:595Google Scholar
  13. Hasegawa M, Hashimoto T, Adachi J, Iwabe N, Miyata T (1993) Early divergences in the evolution of eukaryotes: ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence data. J Mol Evol, in pressGoogle Scholar
  14. Hofmann O, Braunitzer G (1987) The primary structure of the hemoglobin of spectacled bear (Tremarctos ornatus, Carnivora). Biol Chem Hoppe-Seyler 368:949–954Google Scholar
  15. Hofmann O, Schreitmuller T, Braunitzer G (1986) Die primarstruktur derhämoglobine von eisbär (Ursus maritimus, Carnivora) and kragenbär (Ursus tibetanus, Carnivora). Biol Chem Hoppe-Seyler 367:53–59Google Scholar
  16. Hombrados I, Ducastaing S, Iron A, Neuzil E, Debuire B, Han K (1976) Primary structure of the β-chain of badger hemoglobin. Biochim Biophys Acta 427:107–118Google Scholar
  17. Hombrados I, Neuzil E, Debuire B, Han K (1978) The amino acid sequence of the a chain of badger (Meles meles) haemoglobin. Biochim Biophys Acta 535:1–10Google Scholar
  18. Kimura M (1983) In: The neutral theory of molecular evolution. Cambridge Univ Press, Cambridge, pp 55–97Google Scholar
  19. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179Google Scholar
  20. Kishino H, Hasegawa M (1990) Converting distance to time: an application to human evolution. Methods Enzymol 183:550–570Google Scholar
  21. Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 30:151–160Google Scholar
  22. Lin H, Kleinschmidt T, Braunitzer G (1988) Carnivora: The primary structure of the common otter (Lutra lutra, Mustelidae) hemoglobin. Biol Chem Hoppe-Seyler 369:349–355Google Scholar
  23. Mayr E (1986) Uncertainty in science: is the giant panda a bear or a raccoon? Nature 323:769–771Google Scholar
  24. O'Brien SJ, Nash WG, Wildt DE, Bush ME, Benveniste RE (1985) A molecular solution to the riddle of the giant panda's phylogeny. Nature 317:140–144Google Scholar
  25. Rodewald K, Braunitzer G (1988) Carnivora: Primary structure of the hemoglobins from ratel (Mellivora capensis). Biol Chem Hoppe-Seyler 369: 1137–1142Google Scholar
  26. Saitou N, Nei M (1987) The neighbor joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  27. Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. D Reidel Publ Comp, DordrechtGoogle Scholar
  28. Sarich VM (1973) The giant panda is a bear. Nature 245:218–220Google Scholar
  29. Tagle DA, Miyamoto MM, Goodman M, Hofmann O, Braunitzer G, Göltenboth R (1986) Hemoglobin of pandas: phylogenetic relationships of carnivores as ascertained with protein sequence data. Naturwissenschaften 73:512–514Google Scholar
  30. Watanabe B, Maita T, Matsuda G, Goodman M, Johnson ML (1986) Amino-acid sequence of the a and R chains of adult hemoglobin of the harbor seal, Phoca vitulina. Biol Chem Hoppe-Seyler 367:1251–1258Google Scholar
  31. Zhang Y, Shi L (1991) Riddle of the giant panda. Nature 352:573Google Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • Tetsuo Hashimoto
    • 1
    • 2
  • Eiko Otaka
    • 2
  • Jun Adachi
    • 1
  • Keiko Mizuta
    • 2
  • Masami Hasegawa
    • 1
  1. 1.The Institute of Statistical MathematicsTokyoJapan
  2. 2.Department of Biochemistry and BiophysicsResearch Institute for Nuclear Medicine and Biology, Hiroshima UniversityHiroshimaJapan

Personalised recommendations