Journal of Mathematical Biology

, Volume 29, Issue 5, pp 389–404 | Cite as

Mathematical analysis of a basic model for epidermal wound healing

  • J. A. Sherratt
  • J. D. Murray


The stimuli for the increase in epidermal mitosis during wound healing are not fully known. We construct a mathematical model which suggests that biochemical regulation of mitosis is fundamental to the process, and that a single chemical with a simple regulatory effect can account for the healing of circular epidermal wounds. The numerical results of the model compare well with experimental data. We investigate the model analytically by making biologically relevant approximations. We then obtain travelling wave solutions which provide information about the accuracy of these approximations and clarify the roles of the various model parameters.

Key words

Wound healing Mathematical models Travelling waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bereiter-Hahn, J.: Epidermal cell migration and wound repair. In: Bereiter-Hahn, J., Matoltsy, A. G., Richards, K. S. (eds.) Biology of the integument, vol. 2 Vertebrates pp. 443–471. Berlin Heidelberg New York: Springer 1986Google Scholar
  2. Brugal, G., Pelmont, J.: Existence of two chalone-like substances in intestinal extract from the adult newt, inhibiting embryonic intestinal cell proliferation. Cell Tissue Kinet. 8, 171–187 (1975)Google Scholar
  3. Clark, R. A. F.: Overview and general considerations of wound repair. In: Clark, R. A. F., Henson, P. M. (eds.) The molecular and cellular biology of wound repair, pp. 3–34. New York: Plenum Press 1988Google Scholar
  4. Clark, R. A. F.: Wound repair. Curr. Op. Cell Biol. 1, 1000–1008 (1989)Google Scholar
  5. Eisinger, M., Sadan, S., Soehnchen, R., Silver, I. A.: Wound healing by epidermal-derived factors: experimental and preliminary chemical studies. In: Barbul, A., Pines, E., Caldwell, M., Hunt, T. K. (eds.) Growth factors and other aspects of wound healing, pp. 291–302. New York: Liss 1988aGoogle Scholar
  6. Eisinger, M., Sadan, S., Silver, I. A., Flick, R. B.: Growth regulation of skin cells by epidermal cell-derived factors: implications for wound healing. Proc. Natl. Acad. Sci. USA 85, 1937–1941 (1988b)Google Scholar
  7. Engel, J., Taylor, W., Paulsson, M., Sage, H., Hogan, B.: Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/Osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues. Biochem. 26, 6958–6965 (1987)Google Scholar
  8. Folkman, J., Moscona, A.: Role of cell shape in growth control. Nature 273, 345–349 (1978)Google Scholar
  9. Fremuth, F.: Chalones and specific growth factors in normal and tumor growth. Acta Univ. Carol. Monogr. 110 (1984)Google Scholar
  10. Hennings, H., Elgjo, K., Iversen, O. H.: Delayed inhibition of epidermal DNA synthesis after injection of an aqueous skin extract (chalone). Virchows Arch. Abt. B Zellpath 4, 45–53 (1969)Google Scholar
  11. Hondius-Boldingh, W., Laurence, E. B.: Extraction, purification and preliminary characterisation of the epidermal chalone. J. Biochem. 5, 191–198 (1968)Google Scholar
  12. Irvin, T. T.: The healing wound. In: Bucknall, T. E., Ellis, H. (eds.) Wound healing for surgeons, pp. 3–28. Eastbourne, England: Bailliere Tindall 1984Google Scholar
  13. Iversen, O. H.: What's new in endogenous growth stimulators and inhibitors (chalones). Path. Res. Pract. 180, 77–80 (1985)Google Scholar
  14. Iversen, O. H.: The chalones. In: Baserga, R. (ed.) Tissue growth factors, pp. 491–550. Berlin Heidelberg New York: Springer 1981Google Scholar
  15. Iversen, O. H.: Epidermal chalones and squamous cell carcinomas. Virchows Arch. B Cell Path. 27, 229–235 (1978)Google Scholar
  16. Krawczyk, W. S.: A pattern of epidermal cell migration during wound healing. J. Cell Biol. 49, 247–263 (1971)Google Scholar
  17. Marks, F.: A tissue-specific factor inhibiting DNA synthesis in mouse epidermis. Natl. Cancer Inst. Monogr. 38, 79–90 (1973)Google Scholar
  18. Mason, I. J., Taylor, A., Williams, J. G., Sage, H., Hogan, B. L. M.: Evidence from molecular cloning that SPARC, a major product of mouse embryo parietal endoderm, is related to an endothelial cell ‘culture shock’ glycoprotein of M r 43000. The EMBO J. 5, 1465–1472 (1986)Google Scholar
  19. Murray, J. D.: Mathematical biology. Berlin Heidelberg New York: Springer 1989Google Scholar
  20. Odland, G. F.: Structure of the skin. In: Goldsmith, L. A. (ed.) Biochemistry and physiology of the skin, pp. 3–63. Oxford: Oxford Univ. Press 1983Google Scholar
  21. Ortonne, J. P., Loning, T., Schmitt, D., Thivolet, J.: Immunomorphological and ultrastructural aspects of keratinocyte migration in epidermal wound healing. Virchows Arch. A 392, 217–230 (1981)Google Scholar
  22. Potten, C. S., Hume W. J., Parkinson E. K.: Migration and mitosis in the epidermis. Br. J. Dermatol. 111, 695–699 (1984)Google Scholar
  23. Radice, G.: The spreading of epithelial cells during wound closure in xenopus larvae. Dev. Biol. 76, 26–46 (1980)Google Scholar
  24. Rudolph, R.: Contraction and the control of contraction. World J. Surg. 4, 279–287 (1980)Google Scholar
  25. Rytömaa, T., Kiviniemi, K.: Chloroma regression induced by the granulocytic chalone. Nature 222, 995–996 (1969)Google Scholar
  26. Rytömaa, T., Kiviniemi, K.: Regression of generalised leukemia in rat induced by the granulocytic chalone. Eur. J. Cancer 6, 401–410 (1970)Google Scholar
  27. Sage, H., Vernon, R. B., Funk, S. E., Everitt, E. A., Angello, J.: SPARC, a secreted protein associated with proliferation, inhibits cell spreading in vitro and exhibits Ca2+-dependent binding to the extracellular matrix. J. Cell Biol. 109, 341–356 (1989)Google Scholar
  28. Sherratt, J. A., Murray, J. D.: Models of epidermal wound healing. Proc. R. Soc. Lond. B 241, 29–36 (1990)Google Scholar
  29. Snowden, J. M.: Wound closure: an analysis of the relative contributions of contraction and epithelialization. J. Surg. Res. 37, 453–463 (1984)Google Scholar
  30. Stenn, K. S., DePalma, L.: Re-epithelialization. In: Clark, R. A. F., Henson. P. M. (eds.) The molecular and cellular biology of wound repair, pp. 321–335. New York: Plenum Press 1988Google Scholar
  31. Trinkaus, J. P.: Cells into organs. The forces that shape the embryo. Englewood Cliffs, New Jersey: Prentice-Hall 1984Google Scholar
  32. Van den Brenk, H. A. S.: Studies in restorative growth processes in mammalian wound healing. Brit. J. Surg. 43, 525–550 (1956)Google Scholar
  33. Winstanley, E. W.: The epithelial reaction of the healing of excised cutaneous wounds in the dog. J. Comp. Pathol. 85, 61–75 (1975)Google Scholar
  34. Winter, G. D.: Epidermal regeneration studied in the domestic pig. In: Maibach, H. I., Rovee, D. T. (eds.) Epidermal wound healing, pp. 71–112. Chicago: Year Book Med. Publ. Inc. 1972Google Scholar
  35. Wright, N., Alison, M.: Biology of epithelial cell populations. Oxford: Clarendon Press 1984Google Scholar
  36. Wright, N. A.: Cell proliferation kinetics of the epidermis. In: Goldsmith, L. A. (ed.) Biochemistry and physiology of the skin, pp. 203–229. Oxford: Oxford Univ. Press 1983Google Scholar
  37. Yamaguchi, T., Hirobe, T., Kinjo, Y., Manaka, K.: The effect of chalone on the cell cycle in the epidermis during wound healing. Exp. Cell Res. 89, 247–254 (1974)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • J. A. Sherratt
    • 1
    • 2
  • J. D. Murray
    • 1
    • 2
  1. 1.Centre for Mathematical BiologyMathematical InstituteOxfordUK
  2. 2.Department of Applied Mathematics FS-20University of WashingtonSeattleUSA

Personalised recommendations