Journal of Molecular Evolution

, Volume 34, Issue 6, pp 493–505 | Cite as

The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina

  • Úlfur Árnason
  • Ellinor Johnsson
Article

Summary

The nucleotide sequence of the mitochondrial DNA (mtDNA) of the harbor seal, Phoca vitulina, was determined. The total length of the molecule was 16,826 bp. The organization of the coding regions of the molecule conforms with that of other mammals, but the control region is unusually long. A considerable portion of the control region is made up of short repeats with the motif GTACAC particularly frequent. The two rRNA genes and the 13 peptide-coding genes of the harbor seal, fin whale, cow, human, mouse, and rat were compared and the relationships between the different species assessed. At ordinal level the 12S rRNA gene and 7 out of the 13 peptide-coding genes yielded a congruent topological tree of the mtDNA relationship between the seal, cow, whale, human, and the rodents. In this tree the whale and the cow join first, and this clade is most closely related to the seal.

Key words

Mitochondrial DNA Molecular phylogeny Mammalian mtDNA relationships Carnivores Seals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465Google Scholar
  2. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717Google Scholar
  3. Arnason U, Gullberg A, Widegren B (1991) The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J Mol Evol 33:556–568Google Scholar
  4. Attardi G, Chomyn A, Doolittle RF, Mariottini P, Ragan CI (1986) Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase. Cold Spring Harbor Symp Quant Biol LI:103–114Google Scholar
  5. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180Google Scholar
  6. Biju-Duval C, Ennafaa H, Dennebouy N, Monnerot M, Mignotte F, Soriguer RC, Gaaied AD (1991) Mitochondrial DNA evolution in lagomorphs: origin of systematic heteroplasmy and organization of diversity in European rabbits. J Mol Evol 33:92–102Google Scholar
  7. Bulmer M, Wolfe KH, Sharp PM (1991) Synonymous nucleotide substitution rates in mammalian genes: implication for the molecular clock and the relationship of mammalian orders. Proc Natl Acad Sci USA 88:5974–5978Google Scholar
  8. Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36Google Scholar
  9. Czelusniak J, Goodman M, Koop BF, Tagle DA, Shoshani J, Braunitzer G, Kleinschmidt TK, de Jong WW, Matsuda G (1990) Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In: Genoways HH (ed) Current mammalogy, vol 2. Plenum, New York, pp 545–572Google Scholar
  10. Deveraux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395Google Scholar
  11. Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.4). Cladistics 5:164–166Google Scholar
  12. Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sibisa E, Saccone C (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516Google Scholar
  13. Gribskov M, Burgess RR (1986) Sigma factors from E. coli, B. subtilis, phage SPO1, and phage T4 are homologous proteins. Nucleic Acids Res 14(16):6745–6763Google Scholar
  14. Hasegawa M, Kishino H (1989) Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders. Jpn J Genet 64:243–258Google Scholar
  15. Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in the lemur. J Mol Evol 31:113–121Google Scholar
  16. Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5:626–644Google Scholar
  17. Hixson JE, Brown WM (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution and phylogenetic implications. Mol Biol Evol 3:1–18Google Scholar
  18. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144Google Scholar
  19. Kraus F, Miyamoto MM (1991) Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial DNA sequences. Syst Zool 40:117–130Google Scholar
  20. Li W-H, Gouy M, Sharp PM, O'Huigin C, Yang Y-W (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci USA 87:6703–6707Google Scholar
  21. Mignotte F, Gueride M, Champagne A-M, Mounolou J-C (1990) Direct repeats in the non-coding region of rabbit mitochondrial DNA, involvement in the generation of intra- and interindividual heterogeneity. Eur J Biochem 194:561–571Google Scholar
  22. Miyamoto MM, Boyle SM (1989) The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In: Fernholm B, Bremer B, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 437–450Google Scholar
  23. Miyamoto MM, Kraus F, Ryder OA (1990) Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc Natl Acad Sci USA 87:6127–6131Google Scholar
  24. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453Google Scholar
  25. Ramharack R, Deeley RG (1987) Structure and evolution of primate cytochrome c oxidase subunit II gene. J Biol Chem 262:14014–14021Google Scholar
  26. Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  27. Sanger F (1981) Determination of nucleotide sequences in DNA. Science 214:1205–1210Google Scholar
  28. Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350Google Scholar
  29. Smith MF, Patton JL (1991) Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae: Sigmodontinae). Mol Biol Evol 8:85–103Google Scholar
  30. Smith TF, Waterman MS (1981) Comparison of biosequences. Adv Appl Math 2:482–489Google Scholar
  31. Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. Science 253:1503–1508.Google Scholar
  32. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychwski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400Google Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • Úlfur Árnason
    • 1
  • Ellinor Johnsson
    • 1
  1. 1.Department of Molecular GeneticsUniversity of Lund, The Wallenberg LaboratoryLundSweden

Personalised recommendations