Journal of Molecular Evolution

, Volume 39, Issue 6, pp 589–597 | Cite as

Evolutionary analysis of cytochrome b sequences in some perciformes: Evidence for a slower rate of evolution than in mammals

  • P. Cantatore
  • M. Roberti
  • G. Pesole
  • A. Ludovico
  • F. Milella
  • M. N. Gadaletal
  • C. Saccone


To obtain information relative to the phylogenesis and microevolutionary rate of fish mitochondrial DNA, the nucleotide sequence of cytochrome b gene in seven fish species belonging to the order of Perciformes was determined. Sequence analysis showed that fish mitochondrial DNA has a nucleotide compositional bias similar to that of sharks but lower compared to mammals and birds. Quantitative evolutionary analysis, carried out by using a markovian stochastic model, clarifies some phylogenetic relationships within the Perciformes order, particularly in the Scombridae family, and between Perciformes, Gadiformes, Cypriniformes, and Acipenseriformes. The molecular clock of mitochondrial DNA was calibrated with the nucleotide substitution rate of cytochrome b gene in five shark species having divergence times inferred from paleontological estimates. The results of such analysis showed that Acipenseriformes diverged from Perciformes by about 200 MY, that the Perciformes common ancestor dates back to 150 MY, and that fish mitochondrial DNA has a nucleotide substitution rate three to five times lower than that of mammals.

Key words

mitochondrial DNA PCR DNA sequence Perciformes Phylogenetic tree Markov model Evolutionary rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams SM, Blakesley R (1991) Linear amplification DNA sequencing. Focus-BRL 13: 56–58Google Scholar
  2. Adelman R, Saul RL, Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 85: 2706–2708Google Scholar
  3. Anderson S, Bankier AT, Barrel BG, de Bruijin MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465Google Scholar
  4. Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93: 93–145Google Scholar
  5. Avise JC, Bowen BW, Lamb T, Meylan AB, Bermingham E (1992) Mitochondrial DNA evolution at a turtle pace: evidence for low genetic variability and reduced microevolufionary rate in the testudines. Mol Biol Evol 9: 457–473Google Scholar
  6. Bartlett SE, Davidson WS (1991) Identification of Thunnus tuna species by the polymerase chain reaction and direct sequence analysis of their mitochondrial cytochrome by genes. Can J Fish Aquat Sci 48: 309–317Google Scholar
  7. Benton MJ (1990) Vertebrate palaeontology. Unwin Hyman Ltd, LondonGoogle Scholar
  8. Benton MJ (ed) (1993) The fossil record 2. Chapman and Hall, LondonGoogle Scholar
  9. Bernardi G, D'Onofrio G, Caccio S, Bernardi G (1993) Molecular phylogeny of bony fishes based on the aminoacid sequence of the growth hormone. J Mol Evol 37: 644–649Google Scholar
  10. Block BA (1991) Endothermy in fish: thermogenesis, ecology and evolution. In: Hochachka P, Mommsen T (eds) Biochemistry and molecular biology of fishes. Elsevier, New York, pp 269–311Google Scholar
  11. Block BA, Finnerty JR, Stewart AFR, Kidd J (1993) Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260: 210–213Google Scholar
  12. Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398Google Scholar
  13. Brown WM, George Jr M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967–1971Google Scholar
  14. Brown JR, Gilbert TL, Kowbel DJ, O'Hara PJ, Buroker NE, Beckenbach AT, Smith MJ (1989) Nucleotide sequence of the apocytochrome b gene in white sturgeon mitochondrial DNA. Nucleic Acids Res 17: 4389Google Scholar
  15. Carey FC, Teal JM (1966) Heat conservation in tuna fish muscle. Proc Natl Acad Sci USA 56: 1464–1469Google Scholar
  16. Degli Esposti M, Ghelli A, Crimi M, Baracca A, Solaino G, Tron T, Meyer A (1992) Cytochrome b of fish mitochondria is strongly resistant to funicolosin, a powerful inhibitor of respiration. Arch Biochem Biophys 295: 198–204Google Scholar
  17. DeSalle R, Templeton AR (1988) Founder effect and rate of mitochondrial DNA evolution of Hawaiian Drosophila. Evolution 42: 157–164Google Scholar
  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791Google Scholar
  19. Felsenstein J (1993) PHYLIP (phylogeny inference package) v 3.5. Department of Genetics, University of Washington, SeattleGoogle Scholar
  20. GCG, Genetics Computer Group (1993) Program manual for the GCG package, v 7.3. 575 Science Drive, Madison, Wisconsin, USA 53711Google Scholar
  21. Gouy M, Gautier C, Attimonelli M, Lanave C, Di Paola G (1985) ACNUC—a portable retrieval system for nucleic acid sequence databases: logical and physical designs and usage. Comput Appl Biosci 1: 167–172Google Scholar
  22. Hauswirth WW, Laipis MJ (1985) Transmission genetics of mammalian mitochondria: a molecular model and experimental evidence. In: Quagliariello E et al. (ed) Achievements and perspectives of mitochondrial research. Elsevier, Amsterdam, pp 49–59Google Scholar
  23. Hayashi J-I, Walle MJVD, Laipis PJ, Olivo PD (1985) Absence of extensive recombination between inter and intraspecies mitochondrial DNA in mammalian cells. Exp Cell Res 160: 387–395Google Scholar
  24. Hillis DM, Moritz C (ed) (1990) Molecular systematics. Sinauer, Sunderland, MA, pp 502–515Google Scholar
  25. Howell N (1989) Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J Mol Evol 29: 157–169Google Scholar
  26. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of cytochrome b gene of mammals. J Mol Evol 32: 128–144Google Scholar
  27. Johansen S, Johansen T (1994) Sequence analysis of 12 structural genes and a novel non coding region from mitochondrial DNA of Atlantic cod Gadus morhua. Biochim Biophys Acta 1218: 213–217Google Scholar
  28. Jonje H (1989) Genetic toxicology of oxigen. Murat Res219: 193–208Google Scholar
  29. Kocher TD, Thomas WK, Meyer A, Edward SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86: 6196–6200Google Scholar
  30. Lansman RA, Shade RO, Shapira YF, Avise JC (1981) The use of restriction endonuclease to measure mitochondrial DNA sequence relatedness in natural populations. III. Techniques and potential applications. J Mol Evol 17: 214–226Google Scholar
  31. Le HLV, Lecointre G, Perasso R (1993) A 28S based phylogeny of Gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. Mol Phyl Evol 2: 31–51Google Scholar
  32. Li W-H, Tanimura M, Sharp PM (1987) An evaluation of the Molecular Clock hypothesis using mammalian DNA sequences. J Mol Evol 25: 330–342Google Scholar
  33. Martin AP, Naylor GJP, Palumbi SR (1992) Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155Google Scholar
  34. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90: 4087–4091Google Scholar
  35. Meyer A, Wilson AC (1990) Origins of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. J Mol Evol 31: 359–364Google Scholar
  36. Meyer A, Kocher TD, Basabwaki P, Wilson AC (1990) Monophyletic origin of Victoria cichlid fish suggested by mitochondrial DNA sequence. Nature 347: 550–553Google Scholar
  37. Meyer A (1992) Evolution of mitochondrial DNA in fish. In: Hochachka PW, Mommsen TP (ed) Biochemistry and molecular biology of fish, vol 2. Elsevier Press,Google Scholar
  38. Normark BB, McCune AR, Harrison RG (1991) Phylogenetic relationships of neopterygian fish inferred from mitochondrial DNA sequence. Mol Biol Evol 8: 819–834Google Scholar
  39. Novacek MJ (1982) Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. In: Goodman M (ed) Macromolecular sequences in systematic and evolutionary biology. Plenum Press, New York, pp 3–41Google Scholar
  40. Pesole G, Sbisà E, Mignotte F, Saccone C (1991) The branching order of mammals: phylogenetic trees inferred from nuclear and mitochondrial molecular data. J Mol Evol 33: 537–542Google Scholar
  41. Pesole G, Attimonelli M, Preparata G, Saccone C (1992) A statistical method for detecting regions with different evolutionary dynamics in multialigned sequences. Mol Phyl Evol 1: 91–96Google Scholar
  42. Preparata G, Saccone C (1987) A simple quantitative model of the molecular clock. J Mol Evol 26: 7–15Google Scholar
  43. Roe BA, Ma D-P, Wilson RK, Wong JF-H (1985) The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 260: 9759–9774Google Scholar
  44. Saccone C, Lanave C, Pesole G, Preparata G (1990) Influence of base composition on quantitative estimates of gene evolution. Methods Enzymol 183: 570–583Google Scholar
  45. Saccone C, Pesole G, Preparata G (1989) DNA microenvironment and the molecular clock. J Mol Evol 29: 407–411Google Scholar
  46. Saccone C, Pesole G, Kadenbach B (1991) Evolutionary analysis of the nucleus encoded subunits of mammalian cytochrome c oxidase. Eur J Biochem 195: 151–156Google Scholar
  47. Saccone C, Lanave C, Pesole G (1993a) Time and biosequences. J Mol Evol 37: 154–159Google Scholar
  48. Saccone C, Lanave C, Pesole G, Sbisa E (1993b) Peculiar features and evolution of mitochondrial genomes in mammals. In: Di Mauro S, Wallace DC (ed) Mitochondrial DNA in human pathology. Raven Press, New York, pp 27–37Google Scholar
  49. Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425Google Scholar
  50. Sarich VM, Wilson AC (1967) Generation time and genomic evolution in primates. Science 158: 1200–1203Google Scholar
  51. Schlotterer C, Amos B, Tautz D (1991) Conservation of polymorphic simple sequence loci in cetacean species. Nature 354: 63–65Google Scholar
  52. Shields G, Wilson AC (1987) Calibration of mitochondrial DNA evolution in geese. J Mol Evol 24: 212–217Google Scholar
  53. Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85: 2653–2657Google Scholar
  54. Thomas WK, Beckenbach AT (1989) Variation in salmonid mitochondrial DNA: evolutionary constraints and mechanisms of substitution. J Mol Evol 29: 233–245Google Scholar
  55. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, HelmBichowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linnean Soc 26: 375–400Google Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • P. Cantatore
    • 1
  • M. Roberti
    • 1
  • G. Pesole
    • 1
  • A. Ludovico
    • 2
  • F. Milella
    • 1
  • M. N. Gadaletal
    • 1
  • C. Saccone
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of BariBariItaly
  2. 2.Istituto Sperimentale Talassografico “Angelo Cerruti” CNR TarantoItaly

Personalised recommendations