Journal of Mathematical Biology

, Volume 30, Issue 2, pp 125–150

Estimation of growth and survival in size-structured cohort data: an application to larval striped bass (Morone saxatilis)

  • H. T. Banks
  • L. W. Botsford
  • F. Kappel
  • C. Wane
Article

Abstract

We present a method for estimating growth and mortality rates in size-structured population models. The methods are based on least-square fits to data using approximate models (using spline approximations) for the underlying partial differential equation population model. In a series of numerical tests, we compare our approach to an existing method (due to Hackney and Webb). As an example, we apply our techniques to experimental data from larval striped bass field studies.

Key words

Size-structural population models Parameter estimation Growth and mortality rates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    Botsford, L. W.: Modeling, Stability and Optimal Harvest of Aquatic Productive Systems. Ph.D thesis, University of California, Davis 1978Google Scholar
  2. [BBKW]
    Banks, H. T., Botsford, L. W., Kappel, F., Wang, C.: Modeling and estimation in size structured population models. In: Hallam, T. G., Gross, L. J., Levin, S. A. (eds.) Math. Ecology, pp. 521–541. Singapore: World Scientific 1988Google Scholar
  3. [BF1]
    Banks, H. T., Fitzpatrick, B. G.: Inverse problems for distributed systems: statistical test and ANOVA, LCDS/CCS Rep. no. 88–16, Brown University; Proc. Intl. Symp. on Math. Approaches to Environmental and Ecological Problems. (Lect. Notes Biomath., vol. 81, pp. 262–273). Berlin Heidelberg New York: Springer 1989Google Scholar
  4. [BF2]
    Banks, H. T., Fitzpatrick, B. G.: Statistical methods for model comparison in parameter estimation problems for distributed systems. CAMS Rep. no. 89–4, University So. California; J. Math. Biol. 28 (1980), 501–527Google Scholar
  5. [BF3]
    Banks, H. T., Fitzpatrick, B. G.: Estimation of growth rate distributions in size structured population models. Quart. Appl. Math. 49 (1991), 215–235Google Scholar
  6. [BK]
    Banks, H. T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Boston: Birkhäuser 1989Google Scholar
  7. [BKM]
    Banks, H. T., Kareiva, P., Murphy, K. A.: Parameter estimation techniques and redistribution models of species interactions: a predator-prey example. Oceologia 74, 356–362 (1987)Google Scholar
  8. [BM]
    Banks, H. T., Murphy, K.: Quantitative modeling of growth and dispersal in population models, LCDS Report no. 86–4, Brown University; Proceedings Intl. Symp. on Math. Biol. (Lect. Notes Biomath., vol. 71, pp. 89–109) Berlin Heidelberg New York: Springer 1987Google Scholar
  9. [BRR]
    Banks, H. T., Reich, S., Rosen, I. G.: An approximation theory for the identification of nonlinear distributed parameter systems. ICASE Rep. no. 88–26, NASA Langley Res. Ctr.; SIAM J. Control and Optimization 28 (1990), 552–569Google Scholar
  10. [CH]
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. New York: Wiley 1962Google Scholar
  11. [DCC]
    DeAngelis, D. L., Cox, D. K., Coutant, C. C.: Cannibalism and size dispersal in young-of-the-year largemouth bass: experiment and modeling. Ecologia Modeling 8, 133–148 (1980)Google Scholar
  12. [DC1]
    DeAngelis, D. L., Coutant, C. C.: Growth rates and size distributions of first-year smallmouth bass populations: some conclusions from experiments and a model. Trans. Am. Fish. Soc. 108, 137–141 (1979)Google Scholar
  13. [DC2]
    DeAngelis, D. L., Coutant, C. C.: Genesis of bimodal size distributions, in species cohorts. Trans. Am. Fish. Soc. 111, 384–388 (1982)Google Scholar
  14. [DH]
    DeAngelis, D. L., Huston, M. A.: Effects of growth rates in models of size distribution formation in plants and animals. Ecologia Modeling 36, 119–137 (1987)Google Scholar
  15. [DHW]
    DeAngelis, D. L., Hackney, P. A., Webb, J. C.: A partial differential equation model of changing sizes and numbers in a cohort of juvenile fish. Environ. Biol. Fish 5, 261–266 (1980)Google Scholar
  16. [DM]
    DeAngelis, D. L., Mattice, J. S.: Implications of a partial differential equation cohort model. Math. Biosci. 47, 271–285 (1979)Google Scholar
  17. [GR]
    Goel, N. S., Richter-Dyn, N.: Stochastic Models in Biology. New York: Academic Press 1974Google Scholar
  18. [H]
    Hara, T.: Dynamics of size structure in plant populations. Trends Ecol. Evol. 3, 129–133 (1988)Google Scholar
  19. [HD]
    Huston, M. A., DeAngelis, D. L.: Size bimodality in monospecific populations: a critical review of potential mechanism. Am. Nat. (1988)Google Scholar
  20. [HW]
    Hackney, P. A., Webb, J. C.: A method for determining growth and mortality rates of ichthyoplankton. In: Jenson, L. D. (ed.) Proceedings Fourth National Workshop on Entrainment and Impringement, pp. 115–124. Melvill, N.Y.: Ecological Analysts Inc. 1978Google Scholar
  21. [J]
    Jones, R.: Assessing the effects of changes in exploitation pattern using length composition data (with notes on VPA and cohort analysis). FAO Fish. Tech. Pap. 256, 118p. (1984)Google Scholar
  22. [MP]
    MacDonald, P. D. M., Pitcher, T. J.: Age-group from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. J. Fish. Res. Board Can. 36, 987–1001 (1979)Google Scholar
  23. [PD]
    Pauly, D., David, N.: A BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforsch. 28, 205–211 (1981)Google Scholar
  24. [SF]
    Schnute, J., Fourmier, D.: A new approach to length-frequency analysis: growth structure. Can. J. Fish. Aquat. Sci. 37, 1337–1351 (1980)Google Scholar
  25. [SS]
    Sinko, J. W., Streifer, W.: A new model for age-size structure for a population. Ecology 48, 910–918 (1967)Google Scholar
  26. [TI]
    Takada, T., Iwasa, Y.: Size distribution dynamics of plants with interaction by shading. Ecol. Model. 33, 173–184 (1986)Google Scholar
  27. [VS]
    Van Sickle, J.: Analysis of a distributed-parameter population model based on physiological age. J. Theor. Biol. 64, 571–586 (1977)Google Scholar
  28. [W]
    Weiss, G. H.: Equations for the age structure of growing population. Bull. Math. Biophys. 30, 427–435 (1968)Google Scholar
  29. [WDS]
    Wismer, D. A., DeAngelis, D. L., Shuter, B. J.: An empirical model of size distributions of smallmouth bass. Trans. Am. Fish. Soc. 114, 737–742 (1985)Google Scholar
  30. [W1]
    Wloka, J.: Partial Differential Equations. Cambridge: Cambridge University Press 1987Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • H. T. Banks
    • 1
  • L. W. Botsford
    • 2
  • F. Kappel
    • 3
  • C. Wane
    • 4
  1. 1.Center for Applied Mathematical SciencesUniversity of Southern CaliforniaUniversity Park, Los AngelesUSA
  2. 2.Department of Wildlife and Fisheries BiologyUniversity of CaliforniaDavisUSA
  3. 3.Institut für MathematikUniversität GrazGrazAustria
  4. 4.Department of MathematicsUniversity of Southern CaliforniaUniversity Park, Los AngelesUSA

Personalised recommendations