Journal of Molecular Evolution

, Volume 34, Issue 4, pp 324–330

Planarian mitochondria I. Heterogeneity of cytochrome c oxidase subunit I gene sequences in the freshwater planarian, Dugesia japonica

  • Yoshitaka Bessho
  • Takeshi Ohama
  • Syozo Osawa


We have detected sequence heterogeneity in the cytochrome c oxidase subunit I (COI) gene of a freshwater planarian, Dugesia japonica, collected in one locality. A part of the COI gene was amplified via the polymerase chain reaction (PCR) using template DNA prepared from a mixture of 500 individuals or from each of 18 individuals. Analyses of DNA sequences by standard strategies for cloning and sequencing or by direct sequencing clearly show that (1) considerable sequence heterogeneity exists in DNA prepared from the mixed individuals, (2) 11 individuals have almost identical sequences (type A), and (3) 7 individuals have sequences different from one another (Seq-D 1 to SeqD7; collectively called type D). Each of the Seq-D1-D7 sequences except for Seq-D5 shows some heterogeneity even in a single individual (heteroplasmy). A possible cause of the sequence heterogeneities is discussed.

Key words

Planarian Dugesia japonica Mitochondria Cytochrome c oxidase subunit I gene Heterogeneity Neoblast Asexual reproduction Heteroplasmy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith ALH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–464Google Scholar
  2. Anderson S, Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) The complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717Google Scholar
  3. Bessho Y, Ohama T, Osawa S (1992) Planarian mitochondria II. The unique genetic code as deduced from cytochrome c oxidase subunit I gene sequences. J Mol Evol 34:000–000Google Scholar
  4. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180Google Scholar
  5. Bonitz SG, Coruzzi G, Thalenfeld BE, Tzagoloff A, Macino G (1980) Assembly of the mitochondrial membrane system: structure and nucleotide sequence of the gene coding for subunit I of yeast cytochrome oxidase. J Biol Chem 255:11927–11941Google Scholar
  6. Brøndsted A, Brøndsted HV (1961) Number of neoblasts in the intact body of Euplanaria torva and Dendrocoelum lacteum. J Embryol Exp Morphol 9:167–172Google Scholar
  7. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271Google Scholar
  8. Dubois F (1948) Sur les conditions de la migration des cellules de régénération chez les planaires d'eau douce. CR Soc Biol 142:533–535Google Scholar
  9. Garey JR, Wolstenholme DR (1989) Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of tRNAserAGN that contains a dihydrouridine arm replacement loop, and serine-specifying AGA and AGG codons. J Mol Evol 28:374–387Google Scholar
  10. Hensgens LAM, Brakenhoff J, de Vries BF, Sloof P, Tromp MC, van Boom JH, Benne R (1984) The sequence of the gene for cytochrome c oxidase subunit I, a frameshift containing gene for cytochrome c oxidase subunit II and seven unassigned reading frames in Trypanosoma brucei mitochondrial maxi-circle DNA. Nucleic Acids Res 12:7327–7344Google Scholar
  11. Hoeh WR, Blakley KH, Brown WM (1991) Heteroplasmy suggests limited biparental inheritance of Mytilus mitochondrial DNA. Science 251:1488–1490Google Scholar
  12. Innis MA, Myambo KB, Gelfand DH, Brow MAD (1988) DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci USA 85:9436–9440Google Scholar
  13. Jacobs HT, Elliot DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202:185–217Google Scholar
  14. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, London, pp 34–50Google Scholar
  15. Kondo R, Satta Y, Matsuura ET, Ishiwa H, Takahata N, Chigusa SI (1990) Incomplete maternal transmission of mitochondrial DNA in Drosophila. Genetics 126:657–663Google Scholar
  16. Lender T, Gabriel A (1960) Étude histochimique des néoblastes de Dugesia lugubris (Turbellarié triclade) avant et pendant la régénération. Bull Soc Zool Fr 85:100–110Google Scholar
  17. Lender T, Gabriel A (1965) Les néoblastes marqués par l'uridine tritiée migrent ét edifient le blastème de régénération des Planaires d'eau deuce. CR Acad Sci Paris 260:4095–4097Google Scholar
  18. McWhinnie MA, Gleason MM (1957) Histological changes in regenerating pieces of Dugesia dorotocephala treated with colchicine. Biol Bull 112:371–376Google Scholar
  19. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, pp 254–259Google Scholar
  20. Ohama T, Kumazaki T, Hori H, Osawa S, Takai M (1984) Evolution of multicellular animals as deduced from 5S rRNA sequences: a possible early emergence of the Mesozoa. Nucleic Acids Res 12:5101–5108Google Scholar
  21. Pritchard AE, Seilhamer J, Cummings DJ (1986) Paramecium mitochondrial DNA sequences and RNA transcripts for cytochrome oxidase subunit I, URF1, and three ORFs adjacent to the replication origin. Gene 44:243–253Google Scholar
  22. Roe BA, Ma DP, Wilson RK, Wong JFH (1985) The complete nucleotide sequence of the Xenopus laevis mitochondrial genome. J Biol Chem 260:9759–9774Google Scholar
  23. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354Google Scholar
  24. Satta Y, Takahata N (1990) Evolution of Drosophila mitochondrial DNA and the history of the melanogaster subgroup. Proc Natl Acad Sci USA 87:9558–9652Google Scholar
  25. Takahata N (1985) Population genetics of extranuclear genomes: a model and review. In: Ohta T, Aoki K (eds) Population genetics and molecular evolution. Japan Scientific Societies Press, Tokyo, pp 195–212Google Scholar
  26. Tamura Y, Yamayosi T, Oki I (1979) Karyological and taxonomic studies of Dugesia japonica Ichikawa et Kawakatsu II. Chromosomes of Dugesia japonica japonica collected from eighteen localities in Japan. Proc Jpn Soc Syst Zool 17:1–14Google Scholar
  27. Tamura S, Oki I, Kawakatsu M, Lue K-Y, Takai M, Hori H, Muto A, Osawa S (1987) A new series of studies on the freshwater and land planarians from Taiwan V. Chromosomes of Dugesia japonica. Bull Fuji Women's Coll no 25, ser II:55–65Google Scholar
  28. Teshirogi W, Ishida S (1987) Neoblasts and formation of tissues and organs. In: Teshirogi W (ed) Biology of planarians-foundation, application and experiment. Kyoritsu, Tokyo, pp 68–83Google Scholar
  29. Thomas WK, Pääbo S, Villablanca FX, Wilson AC (1990) Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum species.J Mol Evol 31:101–112Google Scholar
  30. Yonekawa H, Moriwaki K, Gotoh M, Hayashi J, Watanabe J, Miyashita N, Petras M (1981) Evolutionary relationships among five subspecies of Mus musculus based on restriction enzyme cleavage patterns of mitochondrial DNA. Gene 98: 801–816Google Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • Yoshitaka Bessho
    • 1
  • Takeshi Ohama
    • 1
  • Syozo Osawa
    • 1
  1. 1.Laboratory of Molecular Genetics, Department of BiologySchool of Science, Nagoya UniversityNagoyaJapan

Personalised recommendations