Advertisement

Journal of Molecular Evolution

, Volume 35, Issue 6, pp 492–501 | Cite as

Evidence for retrotranscription of protein-coding genes in the Drosophila subobscura genome

  • Gemma Marfany
  • Roser Gonzàlez-Duarte
Article

Summary

Evidence is provided for the presence of retrosequences (also named retroposons) arising from Adh in the Drosophila subobscura genome. Restriction analysis and primary structure of two different retrosequence-containing clones, S812 and S135, are reported. The fact that these retrosequences lack introns and a recognizable promoter strongly supports their retrotranscriptional origin. Adjacent to the two retrosequences analyzed, a middle repetitive DNA element has been found which bears no clear similarity to any sequence reported to date in the GenBank/EMBL Data Library. A comparative analysis of these retrosequences with the functional Adh gene of D. subobscura is presented. In addition, a model concerning the origin, functionality, and propagation of these genome elements is discussed.

Key words

Drosophila subobscura Adh Retrosequence Retropseudogene Repetitive DNA Evolutionary patterns 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashworth A, Skene B, Swift S, Lovell-Badge R (1990) Zfa is an expressed retroposon derived from an alternate transcript of the Zfx gene. EMBO J 9: 1529–1534Google Scholar
  2. Boer PH, Adra CN, Lau Y-F, McBurney MW (1987) The testis-specific phosphoglycerate kinase gene pgk-2 is a recruited retroposon. Mol Cell Biol 7 (9): 3107–3112Google Scholar
  3. Caccone A, Powell JR (1990) Extreme rates and heterogeneity in insect DNA evolution. J Mol Evol 30: 273–280Google Scholar
  4. Chambers GK (1988) The Drosophila alcohol dehydrogenase gene-enzyme system. In: Caspar EW and Scandalios JG (eds) Advances in genetics, vol 25. Academic Press, New York, pp 39–107Google Scholar
  5. Deininger PL, Daniels GR (1986) The recent evolution of mammalian repetitive DNA elements. T I G 2 (3): 76–80Google Scholar
  6. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395Google Scholar
  7. DiNocera PP, Digan ME, Dawid IB (1983) A family of oligoadenylated transposable sequences in Drosophila melanogaster. J Mol Biol 168: 715–727Google Scholar
  8. Eickbush TH, Robins B (1985) Bombyx mori 28S ribosomal genes contain insertion elements similar to the Type I and II elements of Drosophila melanogaster. EMBO J 4: 2281–2285Google Scholar
  9. Felger I, Sperlich D (1989) Cytological localization and organization of dispersed middle repetitive DNA sequences of Drosophila subobscura. Chromosoma 98: 342–350Google Scholar
  10. Finnegan DF (1989) F and related elements in Drosophila melanogaster. In: Berg DE and Howe MM (ed) Mobile DNA. American Society for Microbiology, Washington, DC, pp 517–519Google Scholar
  11. Goldberg DA (1980) Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene. Proc Natl Acad Sci USA 77: 5795–5798Google Scholar
  12. Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28: 351–359Google Scholar
  13. Hernández JJ, Vilageliu LL, González-Duarte R (1988) Functional and biochemical features of alcohol dehydrogenase in four species of the obscura group of Drosophila. Genetica 77: 15–24Google Scholar
  14. Holmquist R, Cantor C, Jukes T (1972) Improved procedures for comparing homologous sequences in molecules of protein and nucleic acids. J Mol Biol 64: 145–161Google Scholar
  15. Hull R, Will H (1989) Molecular biology of viral and nonviral retroelements. T I G 5 (11): 357–359Google Scholar
  16. Jeffs PS, Ashburner M (1991) Processed pseudogenes in Drosophila. Proc R Soc London B 244: 151–159Google Scholar
  17. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21–132Google Scholar
  18. Li D, Johnson LF (1989) A mouse thymidilate synthase pseudogene derived from an aberrantly processed RNA molecule. Gene 82: 363–370Google Scholar
  19. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual, ed 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  20. Marfany G, Gonzàlez-Duarte R (1991) The Adh genomic region of Drosophila ambigua: evolutionary trends in different species. J Mol Evol 32: 454–462Google Scholar
  21. Marfany G, Gonzàlez-Duarte R (1992) The Drosophila subobscura Adh genomic region contains valuable evolutionary markers. Mol Biol Evol 9: 261–277Google Scholar
  22. Martin G, Wiernasz D, Schedl P (1983) Evolution of Drosophila repetitive-dispersed DNA. J Mol Evol 19: 203–213Google Scholar
  23. Miyata T, Yasunaga T (1981) Rapidly evolving mouse α-globin-related pseudogene and its evolutionary history. Proc Natl Acad Sci USA 78: 453–5450Google Scholar
  24. Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, Dodgson J (1980) The evolution of genes: the chicken pre-proinsulin gene. Cell 20: 555–566Google Scholar
  25. Pinsker W, Sperlich D (1984) Cytogenetic mapping of enzyme loci on chromosomes J and U of Drosophila subobscura. Genetics 108: 913–926Google Scholar
  26. Rogers JH (1983) Retroposons defined. Nature 301: 460Google Scholar
  27. Rogers JH (1985) The origin and evolution of retroposons. Int Rev Cytol 93: 187–279Google Scholar
  28. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467Google Scholar
  29. Schaeffer SW, Aquadro CF (1987) Nucleotide sequence of the Adh region of Drosophila pseudoobscura: evolutionary changes and evidence for an ancient duplication. Genetics 117: 61–73Google Scholar
  30. Sharp PM, Li W-H (1989) On the rate of DNA sequence evolution in Drosophila. J Mol Evol 28: 398–402Google Scholar
  31. Soares M, Schon E, Henderson A, Karathanasis SK, Cate R, Zeitlin S, Chirgwin J, Efstratiadis A (1985) RNA-mediated gene duplication: the rat preproinsulin I gene is a functional retroposon. Mol Cell Biol 5 (8): 2090–2103Google Scholar
  32. Sofer W, Martin PF (1987) Analysis of alcohol dehydrogenase gene expression in Drosophila. Ann Rev Genet 21: 203–225Google Scholar
  33. Stein JP, Munjaal RP, Lagace L, Lai EC, O'Malley BW, Means AR (1983) Tissue-specific expression of a chicken calmodulin pseudogene lacking intervening sequences. Proc Natl Acad Sci USA 80: 6485–6489Google Scholar
  34. Sullivan DT, Atkinson PW, Starmer WT (1990) Molecular evolution of the alcohol dehydrogenase gene in the genus Drosophila. In: Hecht MK, Wallace B, MacIntyre RJ (ed) Evolutionary biology. Plenum, New York, pp 107–147Google Scholar
  35. Temin HM (1989) Retrons in bacteria. Nature 339: 254–255Google Scholar
  36. Throckmorton L (1975) The phylogeny, ecology, and geography of Drosophila. In: King RC (ed) Handbook of genetics, vol 3. Plenum, New York, pp 421–469Google Scholar
  37. Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Ann Rev Genet 19: 253–272Google Scholar
  38. Visa N, Marfany G, Vilageliu LI, Albalat R, Atrian S, González-Duarte R (1991) The Adh in Drosophila: chromosomal location and restriction analysis in species with different phylogenetic relationships. Chromosoma 100: 315–322Google Scholar
  39. Visa N, Fibla J, González-Duarte R, Santa-Cruz MC (1992) Progressive distribution of alcohol dehydrogenase during vitellogenesis in Drosophila melanogoster: characterization of ADH-positive bodies in mature oocytes. Cell Tissue Res 268: 217–224Google Scholar
  40. Wagner M (1986) A consideration of the origin of processed pseudogenes. T I G 2 (5): 134–137Google Scholar
  41. Weiner AM, Deininger PL, Efstratiadis A (1986) Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Ann Rev Biochem 55: 631–661Google Scholar

Copyright information

© Springer-Verlag New York Inc 1992

Authors and Affiliations

  • Gemma Marfany
    • 1
  • Roser Gonzàlez-Duarte
    • 1
  1. 1.Departament de Genètica, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations