Journal of Mathematical Biology

, Volume 32, Issue 4, pp 329–344 | Cite as

Population dynamic consequences of competition within and between age classes

  • R. M. Nisbet
  • L. C. Onyiah


We investigate the population dynamics of a semivoltine species whose juvenile development takes two years to complete, and is followed by a very short reproductive adult stage. Reproduction is synchronized so at any given time the juvenile population consists of two cohorts. Coexistence of the two cohorts requires that the strength of intea-cohort competition exceeds that of inter-cohort competition, an extension of the competitive exclusion principle. The population may exhibit population cycles with low integer period. We identify two mechanisms for two-year cycles, and note that four-year cycles are a natural consequence of overcompensation. Three year cycles can occur and we discuss the mechanisms involved.

Key words

Population dynamics Competition Age structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellows, T. S., Jr.: The descriptive properties of some models for density dependence. J. Anim. Ecol. 50, 139–156 (1981)Google Scholar
  2. Bellows, T. S., Jr.: Analytical model for laboratory populations of Callosobruchus Chinensis and C. Maculatus (Coleoptera:Bruchidae). J. Anim. Ecol. 51, 263–287 (1982)Google Scholar
  3. Blythe, S. P., Nisbet, R. M., Gurney, W. S. C.: The dynamics of population models with distributed maturation periods. Theor. Popul. Biol. 25, 289–311 (1984)Google Scholar
  4. Briggs, C. J.: Competition among parasitoid species on a stage-structured host, and its effect on host suppression. Am. Nat. 141, 372–397Google Scholar
  5. Briggs, C. J., Nisbet, R. M., Murdoch, W. W.: Coexistence of competing parasitoid species on a host with a variable life cycle. Theor. Popul. Biol. (in press, 1993)Google Scholar
  6. Crowley, P. H., Nisbet, R. M., Gurney, W. S. C., Lawton, J. H.: Population regulation in animals with complex life-histories: Formulation and analysis of a damselfly model. Adv. Ecol. Res. 17, 1–58 (1987)Google Scholar
  7. Cushing, J. M.: A simple model of cannibalism. Math. Biosci. 53, 47–71 (1991)Google Scholar
  8. Cushing, J. M., Li, J.: On Ebenman's model for the dynamics of a population with competing juveniles and adults. Bull. Math. Biol. 51, 687–713 (1989)Google Scholar
  9. Cushing J. M., Li, J.: Intra-specific competition and density-dependent juvenile growth. Bull. Math. Biol. 54, 503–519 (1992)Google Scholar
  10. Ebenman, B.: Niche differences between age and classes and intraspecific competition in age-structured populations J. Theor. Biol. 124, 25 (1987)Google Scholar
  11. Ebenman, B.: Competition between age-classes and population dynamics. J. Theor. Biol. 131, 389–400 (1988)Google Scholar
  12. Guckenheimer, J., Oster, G., Ipaktchi, A.: The dynamics of density-dependent population models. J. Math Biol. 4, 101–147 (1977)Google Scholar
  13. Gurney, W. S. C., Nisbet, R. M.: Fluctuation periodicity, generation separation, and expression of larval competition. Theor. Popul. Biol. 28, 150–180 (1985)Google Scholar
  14. Hamrin, S. F., Persson, L.: Asymmetrical competition between age classes as a factor causing population oscillations in an obligate planktivorous fish species. Oikos 47, 223 (1986)Google Scholar
  15. Hassell, M. P.: Density dependence in simple species populations. J. Anim. Ecol. 44, 263–295 (1975)Google Scholar
  16. Hassell, M. P., Lawton, J. H., May, R M.: Patterns of behaviour in single species populations. J. Anim. Ecol. 45, 471–486 (1976)Google Scholar
  17. Kot, M., Schaffer, W. M.: The effects of seasonality on discrete models of population growth. Theor. Popul. Biol. 26, 340–360 (1984)Google Scholar
  18. Iooss, G.: Bifurcations of Maps and Applications. Amsterdam: North Holland 1979Google Scholar
  19. Lauwerier, H. A., Metz, J. A. J.: Hopf Bifurcation in Host-Parasitoid Models. IMAJ. Math Appl. Med. Biol. 3, 191–210 (1986)Google Scholar
  20. Liu, W.: Acta. Math. Appl. Sin. (in review, 1992)Google Scholar
  21. Loreau, M.: Competition between age-classes and stability of stage structured populations: a re-examination of Ebenman's model. J. Theor. Biol. 144, 567–571 (1990)Google Scholar
  22. Marsden, J. E., McCracken, M.: The Hopf Bifurcation and Its Applications. Berlin Heidelberg New York: Springer 1976Google Scholar
  23. May, R. M.: Stability and Complexity in Model Ecosystems, 2nd. ed. Princeton: Princeton University Press 1974aGoogle Scholar
  24. May, R. M.: Biological populations with non-overlapping generations: Stable points, stable cycles, and chaos. Science 186, 645–647 (1974b)Google Scholar
  25. May, R. M.: Biological populations obeying difference equations: Stable points, stable cycles, and chaos. J. Theor. Biol. 49, 511–524 (1975)Google Scholar
  26. May, R. M.: Simple mathematical models with very complex dynamics. Nature (London) 261 459–467 (1976)Google Scholar
  27. May, R M., Conway, G. R., Hassell, M. P., Southwood T. R. E.: Time delays, density-dependence and single species oscillations. J. Anim. Ecol. 47, 249–267 (1974)Google Scholar
  28. May, R M., Oster, G. F.: Bifurcations and dynamic complexity in simple ecological model. Am. Nat. 110, 573–599 (1976)Google Scholar
  29. Metropolis, N., Stein, M. L., Stein, P. R.: Stable states of a non-linear transformation. Num. Math. 10, 1–19 (1967)Google Scholar
  30. Mira, C.: Chaotic Dynamics. Singapore: World Scientific 1987Google Scholar
  31. Mittlebach, G. G., Chesson, P. L.: Predarion risk: indirect effects on fish populations In: Kerfoot, W. C., Sih, A. (eds.) Predarion: direct and indirect effects on aquatic communities, pp. 315–332. Hannover, NH, USA: New England University Press 1987Google Scholar
  32. Nisbet, R. M., Gurney, W. S. C.: Models of uniform larval competition. In: Levin, S. A., Hallam, T., (eds.) Biomathematics: Mathematical Ecology. Berlin Heidelberg New York: Springer 1984Google Scholar
  33. Nisbet, R. M., Murdoch, W. W., Stewart-Oaten, A.: Consequences for adult fish stocks of human-induced mortality on immatures. In: Schnmitt, R. J., Osenberg, C. (eds.) Environmental Impact Assessment: Conceptual issues and Application in Coastal Marine Environments. University of California Press (in press, 1993)Google Scholar
  34. Onyiah, L. C.: Simple nonlinear models for semivoltine populations. PhD thesis, University of Strathclyde, Glasgow, UK 1989Google Scholar
  35. Press, W. H., Flannery, B. P., Teukolsky, S. A., Vettering, W. T.: Numerical Recipes (The Art of Scientific Computing). Cambridge: Cambridge University Press 1986Google Scholar
  36. Rodriguez, D. J.: Models of growth with density dependence in more than one stage. Theor. Popul. Biol. 34, 93–119 (1988)Google Scholar
  37. Ruelle, D.: Elements of Differentiable Dynamics and Bifurcation Theory. Boston: Academic Press 1989Google Scholar
  38. Tschumy, W. O.: Competition between juveniles and adults in age-structured populations. Theor. Popul. Biol. 21, 255–268 (1981)Google Scholar
  39. van der Bosch, F., de Roos, A. M., Gabriael, W.: Cannibalism as a life-boat mechanism. J. Math. Biol. 26, 619–633 (1988)Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • R. M. Nisbet
    • 1
  • L. C. Onyiah
    • 2
  1. 1.Department of Biological SciencesUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Department of Mathematics and StatisticsNewcastle PolytechnicNewcastle upon TyneUK

Personalised recommendations